5.設(shè)數(shù)列{an}的前n項和Sn=2an-a1.且a1,a2+1,a2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列$\frac{{2}^{n}}{({a}_{n}-1)({a}_{n-1}-1)}$的前n項和Tn,求使得|Tn-1|$<\frac{1}{2016}$成立的n的最小值.

分析 (1)由Sn=2an-a1,得Sn-1=2an-1-a1,n≥2,兩式相減,得an=2an-1,從而數(shù)列{an}是首項為2,公比為2的等比數(shù)列,由此能求出an
(2)由${a}_{n}={2}^{n}$,得$\frac{{2}^{n}}{({a}_{n}-1)({a}_{n-1}-1)}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n-1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n-1}-1}$,由此利用裂項求和法能求出使得|Tn-1|$<\frac{1}{2016}$成立的n的最小值.

解答 解:(1)∵數(shù)列{an}的前n項和Sn=2an-a1,∴Sn-1=2an-1-a1,n≥2,
兩式相減,得an=2an-1,n≥2,
∴a2=2a1,a3=4a1,
∵a1,a2+1,a2成等差數(shù)列,
∴a1+a3=2(a2+1),∴a1+4a1=2(2a1+1),解得a1=2,
∴數(shù)列{an}是首項為2,公比為2的等比數(shù)列,
∴an=2n
(2)由${a}_{n}={2}^{n}$,得$\frac{{2}^{n}}{({a}_{n}-1)({a}_{n-1}-1)}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n-1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n-1}-1}$,
∴數(shù)列$\frac{{2}^{n}}{({a}_{n}-1)({a}_{n-1}-1)}$的前n項和:
Tn=$\frac{1}{2-1}-\frac{1}{{2}^{2}-1}+\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1}$+…+$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$
=$1-\frac{1}{{2}^{n+1}-1}$,
∵|Tn-1|$<\frac{1}{2016}$,
∴|1-$\frac{1}{{2}^{n+1}-1}-1$|<$\frac{1}{2016}$,即2n+1>2017,
∵210=1024<2017<2048=211,
∴n+1≥11,
∴使得|Tn-1|$<\frac{1}{2016}$成立的n的最小值是10.

點(diǎn)評 本題考查數(shù)列的通項公式的求法,考查滿足條件的自然數(shù)的最小值的求法,是中檔題,注意裂項求和法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某市8所中學(xué)生參加比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是( 。
A.91   5.5B.91  5C.92  5.5D.92 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,設(shè)圓弧x2+y2=1(x≥0,y≥0)與兩坐標(biāo)軸正半軸圍成的扇形區(qū)域為M,過圓弧上中點(diǎn)A做該圓的切線與兩坐標(biāo)軸正半軸圍成的三角形區(qū)域為N.現(xiàn)隨機(jī)在區(qū)域N內(nèi)投一點(diǎn)B,若設(shè)點(diǎn)B落在區(qū)域M內(nèi)的概率為P,則P的值為( 。
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知扇形的中心角為$\frac{π}{3}$,半徑為2,則其面積為(  )
A.$\frac{π}{6}$B.$\frac{4π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-1,x≥a}\\{-{x}^{2}+2x-1,x<a}\end{array}\right.$對于任意的實數(shù)b,函數(shù)y=f(x)-b至多有一個零點(diǎn),則實數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.關(guān)于x的不等式m-|x-2|>1的解集為(0,4),則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某校從8名教師中選派4名教師去4個邊遠(yuǎn)地區(qū)支教,每地1人,其中甲和乙不能同去,甲與丙同去或者同不去,則不同的選派方案有600種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l經(jīng)過拋物線y2=4x的焦點(diǎn)F,且與該拋物線相交于A,B兩點(diǎn),
(1)當(dāng)直線l⊥x軸時,求線段AB的長
(2)當(dāng)直線l的斜率為1時,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=ax2+bx+c的圖象過原點(diǎn),它的導(dǎo)函數(shù)y=f′(x)的圖象是如圖所示的一條直線,則( 。
A.-$\frac{2a}$>0,$\frac{4ac-^{2}}{4a}$>0B.-$\frac{2a}$<0,$\frac{4ac-^{2}}{4a}$>0
C.-$\frac{2a}$>0,$\frac{4ac-^{2}}{4a}$<0D.-$\frac{2a}$<0,$\frac{4ac-^{2}}{4a}$<0

查看答案和解析>>

同步練習(xí)冊答案