中心在原點(diǎn),對稱軸為坐標(biāo)軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是 ( )
設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:
∴
,
得雙曲線的一條漸近線的方程為 y=
x,
∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時有:
;
②當(dāng)焦點(diǎn)在y軸上時有:
;
∴求得雙曲線的離心率
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
:
的離心率為
,過坐標(biāo)原點(diǎn)
且斜率為
的直線
與
相交于
、
,
.
⑴求
、
的值;
⑵若動圓
與橢圓
和直線
都沒有公共點(diǎn),試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知A、B分別為曲線C:
與
x軸的左右兩個交點(diǎn),直線
l過點(diǎn)B且
x軸垂直,M為
l上的一點(diǎn),連結(jié)AM交曲線C于點(diǎn)T。
(I)當(dāng)
,求點(diǎn)T坐標(biāo);
(II)點(diǎn)M在x軸上方,若
的面積為2,當(dāng)
的面積的最大值為
時,求曲線C的離心率
e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
-
=1的漸近線與圓(x-3)
2+y
2=r
2(r>0)相切,則r= ( )
A. | B.2 | C.3 | D.6 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題15分)已知拋物線
,過點(diǎn)
的直線
交拋物線
于
兩點(diǎn),且
.
(1)求拋物線
的方程;
(2)過點(diǎn)
作
軸的平行線與直線
相交于點(diǎn)
,若
是等腰三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若曲線
與直線
沒有公共點(diǎn),則
的取值范圍是________________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)過點(diǎn)M(1,1)作直線與拋物線
交于A、B兩點(diǎn),該拋物線在A、B兩點(diǎn)處的兩條切線交于點(diǎn)P。 (I)求點(diǎn)P的軌跡方程; (II)求△ABP的面積的最小值。
查看答案和解析>>