12.已知角α的終邊上一點(diǎn)P(1,-2),則$\frac{sinα+3cosα}{sinα-cosα}$=-$\frac{1}{3}$.

分析 由條件利用任意角的三角函數(shù)的定義求得tanα的值,再利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.

解答 解:∵角α的終邊上一點(diǎn)P(1,-2),∴tanα=$\frac{y}{x}$=-2,
則$\frac{sinα+3cosα}{sinα-cosα}$=$\frac{tanα+3}{tanα-1}$=$\frac{-2+3}{-2-1}$=-$\frac{1}{3}$,
故答案為:-$\frac{1}{3}$.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集U=R,A={x|-1<x≤2},B={x|0≤x<4}
(1)求A∪B,A∩B,∁UB
(2)求(∁UA)∩B,∁U(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)命題α:x>0,命題β:x>m,若α是β的充分條件,則實(shí)數(shù)m的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC的邊BC上一動(dòng)點(diǎn)D滿足$\overrightarrow{CD}$=n$\overrightarrow{DB}$(n∈N*),$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則數(shù)列{(n+1)x}的前n項(xiàng)和為(  )
A.$\frac{1}{n+1}$B.$\frac{n}{n+1}$C.$\frac{1}{2}n(n+1)$D.$\frac{1}{2}(n+1)(n+2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1,a3,3a2成等差數(shù)列.
(Ⅰ)求等比數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若cn=an•($\frac{2}{n+1}-λ$),n=1,2,3,…,且數(shù)列{cn}為單調(diào)遞減數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某程序框圖如圖所示,若運(yùn)行該程序后輸出S=( 。
A.$\frac{5}{3}$B.$\frac{7}{4}$C.$\frac{9}{5}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)數(shù)列{an},{bn},{an+bn}都是等比數(shù)列,且滿足a1=b1=1,a2=2,則數(shù)列{an+bn}的前n項(xiàng)和Sn=2n+1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某班有50人,從中選10人均分2組(即每組5人),一組打掃教室,一組打掃操場,那么不同的選派法有( 。
A.$C_{50}^{10}•C_{10}^5$B.$\frac{{C_{50}^{10}•C_{10}^5}}{2}$
C.$C_{50}^{10}•C_{10}^5•A_2^2$D.$C_{50}^5•C_{45}^5•A_2^2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=ax-2-2的圖象恒過點(diǎn)P,且對數(shù)函數(shù)y=g(x)的圖象過點(diǎn)P,則g(x)=log${\;}_{\frac{1}{2}}$x.

查看答案和解析>>

同步練習(xí)冊答案