分析 (1)由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由特殊點的坐標(biāo)求出φ的值,可得函數(shù)的解析式.
(2)由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答 解:(1)∵由圖知:A=2,…(1分)
∴T=2($\frac{11π}{12}$-$\frac{5π}{12}$)=π,…(2分)
∴T=$\frac{2π}{ω}$,可得:ω=2,
∴y=2sin(2x+φ),…(3分)
把($\frac{5π}{12}$,2)代入得2sin($\frac{5π}{6}$+φ)=2,
可得:sin($\frac{5π}{6}$+φ)=1,
∵|φ|<$\frac{π}{2}$,
∴$\frac{5π}{6}$+φ=$\frac{π}{2}$,可得:φ=-$\frac{π}{3}$,(注:其它方法酌情給分)
∴y=2sin(2x-$\frac{π}{3}$). …(5分)
(2)y=2sin(2x-$\frac{π}{3}$)的圖象可由y=sinx的圖象
先向右平移$\frac{π}{3}$個單位長度,再保持縱坐標(biāo)不變橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,最后保持橫坐標(biāo)不變縱坐標(biāo)伸長為原來的2倍得到.
(或先保持縱坐標(biāo)不變橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{6}$個單位長度,最后保持橫坐標(biāo)不變縱坐標(biāo)伸長為原來的2倍得到.) …(8分)
(注:如果三步變換中的某一步的變換不正確,本問得0分)
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | (0,$\frac{1}{4}$) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,7) | B. | (-1,6) | C. | (-1,7) | D. | (-2,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com