【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,點的極坐標為,點的極坐標為,曲線的直角坐標方程為:.

1)求曲線和直線的極坐標方程;

2)過點的射線交曲線點,交直線點,若,求射線所在直線的直角坐標方程.

【答案】1; 2

【解析】

1)由,能求出曲線的極坐標方程,把點的極坐標和點的極坐標都化為直角坐標,求出直線的直角坐標方程,由此能求出直線的極坐標方程;

2)設射線,代入曲線,得:,代入直線,得:,由,得到,由此能求出射線所在直線的直角坐標方程.

1)因為曲線的直角坐標方程為:.

所以,

因為,

所以曲線的極坐標方程為,即,

因為點的極坐標為,點的極坐標為,

所以點的直角坐標為,點的直角坐標為,

所以直線的直角坐標方程為,

所以直線的極坐標方程為.

2)設射線,代入曲線,得:,

代入直線,得:

因為,

所以,

所以

所以射線所在直線的直角坐標方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點,求a的取值范圍;

設函數(shù),,當時,若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調性;

時,求函數(shù)在區(qū)間上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調區(qū)間;

(2)若存在,且,使得,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)處取得極值,求實數(shù)的值;并求此時上的最大值;

()若函數(shù)不存在零點,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)fx),若fx0)=x0,則稱x0fx)的不動點.fx)=x3+ax2+bx+3.

1)當a0時,

i)求fx)的極值點;

)若存在x0既是fx)的極值點,也是fx)的不動點,求b的值;

2)是否存在a,b,使得fx)有兩個極值點,且這兩個極值點均為fx)的不動點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕成本為50元,每個蛋糕的售價為100元,如果當天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

1若該蛋糕店某一天制作生日蛋糕17個,設當天的需求量為,則當天的利潤(單位:元)是多少?

2若蛋糕店一天制作17個生日蛋糕.

求當天的利潤(單位:元)關于當天需求量的函數(shù)解析式;

求當天的利潤不低于600圓的概率.

(3)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應該制作16個還是17個生日蛋糕?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小學六年級學生的進行一分鐘跳繩檢測,現(xiàn)一班二班各有50人,根據(jù)檢測結果繪出了一班的頻數(shù)分布表和二班的頻率分布直方圖.

一班檢測結果頻數(shù)分布表:

跳繩個數(shù)區(qū)間

頻數(shù)

7

13

20

8

2

1)根據(jù)給出的圖表估計一班和二班檢測結果的中位數(shù)(結果保留兩位小數(shù));

2)跳繩個數(shù)不小于100個為優(yōu)秀,填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認為檢測結果是否優(yōu)秀與班級有關.

一班

二班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式及數(shù)據(jù):,

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地有A,B、CD四人先后感染了新型冠狀病毒,其中只有A到過疫區(qū),B肯定是受A感染的,對于C,因為難以判定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是,同樣也假設DA、BC感染的概率都是.在這種假定之下,B、CD中直接受A感染的人數(shù)X就是一個隨機變量,寫出X的可能取值為______,并求X的均值(即數(shù)學期望)為______.

查看答案和解析>>

同步練習冊答案