如圖,直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M,N分別是A1B1,AB的中點(diǎn),求證:
(1)C1M⊥平面AA1B1B;
(2)A1B⊥AM;
(3)平面AC1M∥平面B1NC.
考點(diǎn):平面與平面平行的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(1)根據(jù)線面垂直的判定定理即可證明C1M⊥平面AA1B1B;
(2)根據(jù)線面垂直的性質(zhì)先證明A1B⊥平面AC1M,即可證明A1B⊥AM;
(3)根據(jù)面面平行的判定定理即可證明平面AC1M∥平面B1NC.
解答: 證明:(1)由直棱柱性質(zhì)得AA1⊥平面A1B1C1,?
又∵C1M?平面A1B1C1,∴AA1⊥MC1.?
又∵C1A1=C1B1,M為A1B1中點(diǎn),∴C1M⊥A1B1.?
又A1B1∩A1A=A1,∴C1M⊥平面AA1B1B.?
(2)∵C1M⊥平面A1ABB1,
A1B?平面AA1B1B,
∴C1M⊥A1B,
∵AC1⊥A1B,(已知),
C1M∩AC1=C1,
∴A1B⊥平面AC1M,
∵AM?平面AC1M,
∴A1B⊥AM.
(3)∵M(jìn)、N分別是A1B1和AB的中點(diǎn),
A1B1=AB,A1B1∥AB,
∴MB1∥AN,MB1=AN,
∴四邊形ANB1M是平行四邊形,
∴B1N∥AM,
∵M(jìn)、N分別是A1B1和AB的中點(diǎn),
∴C1M∥CN,
∵C1M∩AM=M,CN∩NB=N,
∴平面AMC1∥平面NB1C
點(diǎn)評:本題主要考查空間直線和平面,平面和平面平行或垂直的判定,根據(jù)相應(yīng)的判定定理是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,滿足a22+a32=a42+a52,S7=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察以下各等式:
sin230°+cos260°+sin30°cos60°=
3
4

sin220°+cos250°+sin20°cos50°=
3
4

sin215°+cos245°+sin15°cos45°=
3
4

分析上述各式的共同特點(diǎn),猜想出反映一般規(guī)律的等式,并對等式的正確性作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在含有3件次品的5件產(chǎn)品中,任取2件,試求:
(Ⅰ)取到的次品數(shù)X的分布列;
(Ⅱ)至多有1件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,AB1⊥BC,AB∥CD,BC⊥AB且AA1=AB=AD=2,∠A1AB=∠DAB=60°.
(1)求證:AB1⊥平面A1BC;
(2)求該四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+bx的圖象為曲線E.
(1)若a=3,b=-9,求函數(shù)f(x)的極值;
(2)若曲線E上存在點(diǎn)P,使曲線E在P點(diǎn)處的切線與x軸平行,求a,b的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意的實(shí)數(shù)x、y都有f(x+y)=f(x)+f(y)-1,且當(dāng)x>0時(shí),f(x)>1.
(1)求證:函數(shù)f(x)在R上是增函數(shù);
(2)若關(guān)于x的不等式f(x2-ax+5a)<f(m)的解集為{x|-3<x<2},求m的值.
(3)若f(1)=2,求f(2013)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=2,E、F分別是AB、CD上的動點(diǎn),且EF∥BC,設(shè)AE=x(0<x<2),沿EF將梯形ABCD翻折,使使平面AEFD⊥平面EBCF,如圖(2).

(1)求證:平面ABE⊥平面ABCD;
(2)若以B、C、D、F為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(3)當(dāng)f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
x-2sinx,x∈(0,π)的單調(diào)減區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊答案