16.已知集合A={x|x2-2ax+4a2-3=0},集合B={x|x2-x-2=0},集合C={x|x2+2x-8=0}.
(1)若A∩B≠∅,A∩C=∅,求實(shí)數(shù)a的值;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

分析 (1)求出B與C中方程的解確定出B與C,根據(jù)A∩B≠∅,A∩C=∅,確定出a的值即可;
(2)由A∩B=A,得到A⊆B,分A為空集與A不為空集兩種情況求出a的范圍即可.

解答 解:(1)由B中方程變形得:(x-2)(x+1)=0,
解得:x=2或x=-1,即B={-1,2},
由C中方程變形得:(x-2)(x+4)=0,
解得:x=2或x=-4,即C={-4,2},
由A∩B≠∅,A∩C=∅,得到x=-1是A中方程的解,
把x=-1代入A中方程得:1+2a+4a2-3=0,
解得:a=$\frac{1}{2}$或a=-1,
當(dāng)a=$\frac{1}{2}$時(shí),A中方程為x2-x-2=0,即x=2或-1,A={-1,2},不合題意,舍去;
當(dāng)a=-1時(shí),A中方程為x2+2x+1=0,即x=-1,A={-1},符合題意,
則a=-1;
(2)∵A∩B=A,∴A⊆B,
當(dāng)A=∅,即A中方程無(wú)解,△=4a2-4(4a2-3)<0,
解得:a<-1或a>1;
當(dāng)A≠∅時(shí),x=-1或x=2為A中方程的解,
把x=-1代入A中方程得:1+2a+4a2-3=0,
解得:a=$\frac{1}{2}$或a=-1;
把x=2代入A中方程得:4-4a+4a2-3=0,即(2a-1)2=0,
解得:a=$\frac{1}{2}$,
綜上,a的范圍為{a|a≤-1或a>1,且a=$\frac{1}{2}$}.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}滿(mǎn)足2an+1=an+an+2,它的前n項(xiàng)和為Sn,且a3=10,S6=72.若bn=$\frac{1}{2}$an-30.
(1)求數(shù)列{bn}的前n項(xiàng)和Tn的最小值;
(2)求數(shù)列{|bn|}的前n項(xiàng)和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)于函數(shù)f(x)=$\frac{x-1}{x+1}$,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*,且n≥2),令集合M={x|f2015(x)=-x,x∈R},則集合M為( 。
A.空集B.實(shí)數(shù)集C.單元素集D.二元素集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,它的一個(gè)頂點(diǎn)恰好是拋物線x=$\frac{1}{4}$y2的焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若AB為橢圓C的一條不垂直于x軸的弦,且過(guò)點(diǎn)(1,0).過(guò)A作關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A’,證明直線A′B過(guò)x軸的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)$f(x)=\frac{-3+4x}{5-2x}$的值域是( 。
A.(-∞,2)∪(2,+∞)B.(-∞,-2)∪(-2,+∞)C.$({-∞,\frac{5}{2}})∪({\frac{5}{2},+∞})$D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=2x2-3|x|+1的單調(diào)遞減區(qū)間是[0,$\frac{3}{4}$],(-∞,-$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,則使得f(x)>f(2x-1)成立的x的取值范圍是( 。
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.奇函數(shù)y=f(x)在區(qū)間[3,5]上是增函數(shù)且最小值為2,那么y=f(x)在區(qū)間[-5,-3]上是(  )
A.減函數(shù)且最小值為-2B.減函數(shù)且最大值為-2
C.增函數(shù)且最小值為-2D.增函數(shù)且最大值為-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求下列函數(shù)的定義域:
(1)f(x)=$\frac{1}{x+1}$   
(2)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+$\sqrt{3x+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案