4.求下列函數(shù)的定義域:
(1)f(x)=$\frac{1}{x+1}$   
(2)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+$\sqrt{3x+1}$.

分析 (1)直接由分式的分母不為0求得函數(shù)的定義域;
(2)由分式的分母不為0,根式內(nèi)部的代數(shù)式大于等于0聯(lián)立不等式組得答案.

解答 解:(1)要使原函數(shù)有意義,則x+1≠0,即x≠-1.
∴f(x)=$\frac{1}{x+1}$的定義域?yàn)椋?∞,-1)∪(-1,+∞);   
(2)由$\left\{\begin{array}{l}{1-x>0}\\{3x+1≥0}\end{array}\right.$,解得$-\frac{1}{3}≤x<1$.
∴f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+$\sqrt{3x+1}$的定義域?yàn)閇-$\frac{1}{3}$,1).

點(diǎn)評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|x2-2ax+4a2-3=0},集合B={x|x2-x-2=0},集合C={x|x2+2x-8=0}.
(1)若A∩B≠∅,A∩C=∅,求實(shí)數(shù)a的值;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.三棱錐A-BCD的四個頂點(diǎn)同在一個球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=1,則球O的表面積等于3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若k進(jìn)制數(shù)175(k)化為十進(jìn)制數(shù)是125,那么k=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z1=$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i和復(fù)數(shù)z2=cos60°+isin60°,則z1+z2為( 。
A.1B.-1C.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=$\left\{\begin{array}{l}(4+2a)x-8,x<1\\{log_a}x\;\;,\;\;\;\;\;\;\;\;\;\;x≥1\end{array}$是R上的增函數(shù),那么a的取值范圍是1<a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知n=$\frac{6}{π}$${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-2x)dx,則x(1-$\frac{2}{\sqrt{x}}$)n的展開式中的常數(shù)項(xiàng)為(  )
A.-60B.-50C.50D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=ax在[0,1]上的最大值與最小值和為4,則函數(shù)y=ax-1在[0,1]上的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)在[a,b]上有定義,若對任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,2015]上具有性質(zhì) P.現(xiàn)給出如下命題:
①f(x)在[1,2015]上不可能為一次函數(shù);
②函數(shù)f(x2)在[1,$\sqrt{2015}$]上具有性質(zhì)P;
③對任意x1,x2,x3,x4∈[1,2015],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)];
④若f(x)在x=1008處取得最大值 2016,則f(x)=2016,x∈[1,2015].
其中真命題的序號是③④.

查看答案和解析>>

同步練習(xí)冊答案