6.已知1=12,2+3+4=32,3+4+5+6+7=52,…,依此規(guī)律可以得到的第n個(gè)式子為(  )
A.n+(n+1)+(n+2)+…+2n=(n-1)2B.n+(n+1)+(n+2)+…+3n=(n-1)2
C.n+(n+1)+(n+2)+…+(2n+2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2

分析 根據(jù)已知中的等式:1=12,2+3+4=32,3+4+5+6+7=52,…,我們分析等式左邊數(shù)的變化規(guī)律及等式兩邊數(shù)的關(guān)系,歸納推斷后,即可得到答案.

解答 解:觀察已知中等式:
1=(2×1-1)2
2+3+4=(2×2-1)2,
3+4+5+6+7=(2×3-1)2
…,
則n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
故選:D.

點(diǎn)評(píng) 本題考查歸納推理,解題的關(guān)鍵是通過觀察分析歸納各數(shù)的關(guān)系,考查學(xué)生的觀察分析和歸納能力,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.觀察下列等式:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$;1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$;1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$;…以此類推,1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{n}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$,其中n∈N*,則n=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,在直三棱柱A1B1C1-ABC中,AB=AC=BC=AA1,D是側(cè)面BB1CC1的中心,則AD與平面BB1C1C所成的角的大小是(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.將自然數(shù)按照表的規(guī)律排列,如第2行第3列的數(shù)是8,則第2015行第2016列的數(shù)是( 。
A.2015×2016+3B.2015×2016+2C.2015×2016+1D.2015×2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow a$=(cosx,-$\frac{1}{2}$),$\overrightarrow b$=($\sqrt{3}$sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$
(1)求f(x)的最小正周期;
(2)用五點(diǎn)作圖法做出f(x)在區(qū)間[0,π]上的草圖;
(3)寫出f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=1-$\sqrt{1-2x}$,g(x)=lnx,對(duì)于任意m≤$\frac{1}{2}$,都存在n∈(0,+∞),使得f(m)=g(n),則n-m的最小值為(  )
A.e-$\frac{1}{2}$B.1C.$\sqrt{e}$-$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|2x+1|-|x|-2.
(1)解不等式f(x)≥0;
(2)若對(duì)任意的實(shí)數(shù)x,都有f(x)-2a2≥|x|-3a-2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖是一批學(xué)生的體重情況的直方圖,若從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24,則這批學(xué)生中的總?cè)藬?shù)為96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐A-BCDE中,側(cè)面ABC為正三角形,DC=BC=2BE,BE∥CD,DC⊥BC,且側(cè)面ABC⊥底面BCDE,P為AD的中點(diǎn).
(Ⅰ)證明:PE∥平面ABC;
(Ⅱ)證明:平面ADE⊥平面ACD;
(Ⅲ)求二面角P-CE-B的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案