分析 根據(jù)已知及同角三角函數(shù)的基本關(guān)系式,建立方程關(guān)系即可得到結(jié)論.
解答 解:∵2sinα-cosα=$\sqrt{5}$,
∴cosα=2sinα-$\sqrt{5}$,
∵sin2α+cos2α=1,
∴sin2α+(2sinα-$\sqrt{5}$)2=1,
即5sin2α-4$\sqrt{5}$sinα+4=0,
∴解得:sinα=$\frac{2\sqrt{5}}{5}$,
∴cosα=2×$\frac{2\sqrt{5}}{5}$-$\sqrt{5}$=-$\frac{\sqrt{5}}{5}$,tan$α=\frac{sinα}{cosα}$=-2,
∴tan(α-$\frac{π}{4}$)=$\frac{tanα-1}{1+tanα}$=$\frac{-2-1}{1-2}$=3.
故答案為:$\frac{2\sqrt{5}}{5}$,3.
點評 本題主要考查三角函數(shù)值的計算,根據(jù)同角的三角函數(shù)關(guān)系式是解決本題的關(guān)鍵,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線 | B. | 圓 | C. | 橢圓 | D. | 雙曲線的一支 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+2x+1 | B. | f(x)=-3x+2 | C. | f(x)=-x2+2x-4 | D. | f(x)=x+lnx-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一個 | B. | 兩個 | C. | 0 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com