5.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=3\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ為參數(shù)),以原點(diǎn)O為起點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知點(diǎn)P的極坐標(biāo)為(2,-$\frac{π}{3}$),直線l的極坐  標(biāo)方程為ρcos($\frac{π}{3}$+θ)=6.
(Ⅰ)求點(diǎn)P到直線l的距離;
(Ⅱ)設(shè)點(diǎn)Q在曲線C上,求點(diǎn)Q到直線l的距離的最大值.

分析 (Ⅰ)把點(diǎn)P與直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,再利用點(diǎn)到直線的距離公式即可得出.
(Ⅱ)可以判斷,直線l與曲線C無公共點(diǎn),設(shè)$Q(3\sqrt{3}cosθ,\sqrt{3}sinθ)$,利用點(diǎn)到直線的距離公式及其三角函數(shù)的和差公式及其單調(diào)性即可得出.

解答 解:(Ⅰ)點(diǎn)$P({2,-\frac{π}{3}})$的直角坐標(biāo)為$(2cos(-\frac{π}{3}),2sin(-\frac{π}{3}))$,即$({1,-\sqrt{3}})$.
由直線l $ρcos({\frac{π}{3}+θ})=6$,得$\frac{1}{2}ρ({cosθ-\sqrt{3}sinθ})=6$.
則l的直角坐標(biāo)方程為:$x-\sqrt{3}y-12=0$,
點(diǎn)P到l的距離$d=\frac{{|{1+3-12}|}}{2}=4$.
(Ⅱ)可以判斷,直線l與曲線C無公共點(diǎn),
設(shè)$Q(3\sqrt{3}cosθ,\sqrt{3}sinθ)$,
則點(diǎn)Q到直線$x-\sqrt{3}y-12=0$的距離為$d=\frac{{|{3\sqrt{3}cosθ-3sinθ-12}|}}{2}=\frac{{|{6cos({θ+\frac{π}{6}})-12}|}}{2}$,
∴當(dāng)$cos({θ+\frac{π}{6}})=-1$時(shí),dmax=9.

點(diǎn)評(píng) 本題考查了直角坐標(biāo)與極坐標(biāo)的互化、點(diǎn)到直線的距離公式、三角函數(shù)的和差公式及其單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知不等式組$\left\{\begin{array}{l}y≤-x+2\\ y≥kx+1\\ x≥0\end{array}\right.$所表示的平面區(qū)域?yàn)槊娣e等于1的三角形,則實(shí)數(shù)k的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{2e}^{x}}{1{+x}^{2}}$(e為自然對(duì)數(shù)的底數(shù)),若m>4(ln2-1).求證:當(dāng)x>0時(shí),f(x)>$\frac{{2x}^{2}-mx+2}{1{+x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖:已知⊙O是△ABC的外接圓,AB=BC,AH是BC邊上的高,延長(zhǎng)交⊙O于點(diǎn)D,AE是⊙O的直徑.
(1)求證:AE•BH=BD•AB;
(2)過點(diǎn)C作⊙O的切線,交BA延長(zhǎng)線于點(diǎn)F,若AF=2,CF=4,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}$(θ為參數(shù)).以點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4})$=$\sqrt{2}$.
(Ⅰ)將曲線C和直線l化為直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在六面體ABCDEFG中,△ABC是邊長(zhǎng)為4正三角形,AE∥CD,AE⊥平面ABC,AE⊥平面DEFG,AE=CD=3,DG=EF=2.
(1)求該六面體的體積;
(2)求平面ACDE與平面BFG所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=4sinθ.從極點(diǎn)作圓C的弦,記各條弦中點(diǎn)的軌跡為曲線C1
(1)求C1的極坐標(biāo)方程;
(2)已知曲線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$,(0≤α<π,t為參數(shù),且t≠0),l與C交于點(diǎn)A,l與C1交于點(diǎn)B,且|$\overrightarrow{AB}$|=$\sqrt{3}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)是(1,π),點(diǎn)P是曲線C:ρ=2sinθ上的一個(gè)動(dòng)點(diǎn),則|PA|的取值范圍是$[\sqrt{2}-1,\sqrt{2}+1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=log2(x+1)-$\frac{1}{2}$x2的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案