1.下列命題中不正確的是( 。
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
D.如果平面α⊥平面β,且直線l∥平面α,則直線l⊥平面β

分析 根據(jù)空間中直線與直線,直線與平面位置關(guān)系及幾何特征,逐一分析給定四個(gè)結(jié)論的真假,可得答案.

解答 解:如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ,故A正確;
如果平面α⊥平面β,那么平面α內(nèi)一定存在平行于交線的直線平行于平面β,故B正確;
如果平面α內(nèi)存在直線垂直于平面β,則平面α⊥平面β,故如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β,故C正確;
如果平面α⊥平面β,且直線l∥平面α,則直線l與平面β的關(guān)系不確定,故D錯(cuò)誤;
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了空間直線與直線,直線與平面位置關(guān)系及幾何特征,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.《九章算術(shù)•均輸》中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5 錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,乙所得為(  )
A.$\frac{4}{3}$錢B.$\frac{7}{6}$錢C.$\frac{6}{5}$錢D.$\frac{5}{4}$錢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖F1,F(xiàn)2是雙曲線${C_1}:{x^2}-\frac{y^2}{8}=1$與橢圓C2的公共焦點(diǎn),點(diǎn)A是C1,C2在第一象限內(nèi)的公共點(diǎn),若|F1F2|=|F1A|,則C2的離心率是( 。
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),$f(x)=\frac{1}{2}(|x-1|+|x-2|-3)$,若?x∈R,f(x-a)≤f(x),則a的取值范圍是( 。
A.a≥3B.-3≤a≤3C.a≥6D.-6≤a≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sin2x+2$\sqrt{3}$cos2x-$\sqrt{3}$,函數(shù)g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若存在x1,x2∈[0,$\frac{π}{4}$],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是( 。
A.(0,1]B.[1,2]C.[$\frac{2}{3}$,2]D.[$\frac{2}{3}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線(1+λ)x+(λ-1)y+2+2λ=0(λ≠±1)交橢圓$\frac{x^2}{16}+\frac{y^2}{12}$=1于A、B兩點(diǎn),橢圓的右焦點(diǎn)為F點(diǎn),則△ABF的周長為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則剩余部分體積與原四棱錐體積的比值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直三棱柱ABC-A1B1 C1中,AC=2$\sqrt{2}$,AB=BC=BB1=2,N是BB1的中點(diǎn).
(I)求證:BC1⊥平面A1B1C;
(Ⅱ)求三棱錐C-A1B1N的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)向量$\overrightarrow a=({m,2}),\overrightarrow b=({1,m+1})$,且$\overrightarrow a$與$\overrightarrow b$的方向相反,則實(shí)數(shù)m的值為( 。
A.-2B.1C.-2或1D.m的值不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案