函數(shù)f(x)=x2+x+b,函數(shù)g(x)=ex-f′(x)的零點(diǎn)所在的區(qū)間是[k,k+1](k∈Z),則k的值等于( 。
A、-1B、0C、1D、0或1
考點(diǎn):二分法求方程的近似解
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:對(duì)函數(shù)f(x)求導(dǎo)后,可得函數(shù)g(x)=ex-f′(x)的解析式,進(jìn)而根據(jù)g(0)=0可得滿足條件的k值.
解答: 解:∵函數(shù)f(x)=x2+x+b,
∴f′(x)=2x+1,
∴g(x)=ex-f′(x)=ex-(2x+1),
∵g(0)=0,
故函數(shù)g(x)=ex-f′(x)的零點(diǎn)所在的區(qū)間是[0,1],
故k=0,
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是導(dǎo)函數(shù),函數(shù)的零點(diǎn),其中熟練掌握函數(shù)零點(diǎn)的存在定理是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是(  )
A、y=-
1
x
B、y=lgx
C、y=cosx
D、y=e|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)y=cos(x-
π
6
)向左平移m(m>0)個(gè)單位,所得的圖象關(guān)于y軸對(duì)稱,則m的最小值為(  )
A、
π
12
B、
π
6
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-x
x
+
x-2x2
的定義域?yàn)椋ā 。?/div>
A、(
1
2
,1)
B、(0,
1
2
]
C、[0,
1
2
]
D、[
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)不是常數(shù)函數(shù),且滿足對(duì)任意的x有f(x-1)=f(x+1),f(2-x)=f(x),下列5個(gè)結(jié)論:
①f(x)是單調(diào)函數(shù),
②f(x)的圖象關(guān)于x=1對(duì)稱,
③f(x)是周期函數(shù),
④f(x)是偶函數(shù),
⑤f(x)有最大值和最小值.
其中真命題是( 。
A、②③④B、②③⑤
C、①②⑤D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面給出的四個(gè)點(diǎn)中,位于
x+2y-1>0
x-y+3<0
,表示的平面區(qū)域內(nèi)的點(diǎn)是( 。
A、(-4,1)
B、(2,2)
C、(0,4)
D、(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,已知a5+a7=10,Sn是{an}的前n項(xiàng)和,S11等于( 。
A、45B、50C、55D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體ABC-A1B1C1的三視圖和直觀圖如圖所示.
(Ⅰ)求證:平面AB1C1⊥平面AA1C1C;
(Ⅱ)若E是線段AB1上的一點(diǎn),且滿足VE-AA1C1=
1
9
VABC-A1B1C1
,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試求關(guān)于x的函數(shù)y=-x2+mx+2在0≤x≤2上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案