【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù),).以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
【答案】(1)曲線普通方程,曲線的直角坐標(biāo)方程;(2)或.
【解析】
(1)將代入 得的普通方程;
將左右同時(shí)乘以得,再化簡得到曲線的直角坐標(biāo)方程。
(2)將代入,得,利用韋達(dá)定理與參數(shù)的幾何意義可求出實(shí)數(shù)的值。
(1)曲線參數(shù)方程為,
則其普通方程,
因?yàn)?/span>曲線的極坐標(biāo)方程為,
所以,
即,即曲線的直角坐標(biāo)方程.
(2)設(shè)兩點(diǎn)所對(duì)應(yīng)參數(shù)分別為,,
將代入,得,
要使與有兩個(gè)不同的交點(diǎn),
則,即,
由韋達(dá)定理有,根據(jù)參數(shù)的幾何意義可知,,
又由可得,即或,
∴當(dāng)時(shí),有,符合題意.
當(dāng)時(shí),有,符合題意.
綜上所述,實(shí)數(shù)的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AB=1,AD,且∠BAD=45°,以BD為折線,把△ABD折起,使AB⊥DC,連接AC,得到三棱錐A﹣BCD.
(1)求證:平面ABD⊥平面BCD;
(2)求二面角B﹣AC﹣D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正實(shí)數(shù)列a1,a2,…滿足對(duì)于每個(gè)正整數(shù)k,均有,證明:
(Ⅰ)a1+a2≥2;
(Ⅱ)對(duì)于每個(gè)正整數(shù)n≥2,均有a1+a2+…+an≥n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù),).以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=x+m和圓x2+y2=1交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,則實(shí)數(shù)m=( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長為3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.
(Ⅰ)若CE∥面BDF,求PE:ED的值;
(Ⅱ)求二面角B-DF-A的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個(gè)稅新政入民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個(gè)人所得稅(簡稱個(gè)稅)改革迎來了全面實(shí)施的階段.某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對(duì)應(yīng)年齡26-35歲)
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個(gè)稅新政下的專項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳納的個(gè)人所得稅.
附注:①參考數(shù)據(jù):,,,,
,,,其中:取,.
②參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.
③新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:
舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元) | 新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元) | |||
繳稅 級(jí)數(shù) | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn) | 稅率 | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除 | 稅率 |
1 | 不超過1500元的都分 | 3 | 不超過3000元的都分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績;(精確到個(gè)位)
(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績近似服從正態(tài)分布(,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.
(。估計(jì)本次檢測(cè)成績達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績大約是多少分?(精確到個(gè)位)
(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com