12.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,則雙曲線${C_2}:\frac{x^2}{b^2}-\frac{y^2}{a^2}=1$的離心率為$\frac{2\sqrt{3}}{3}$.

分析 由題意可得c=2a,由a,b,c的關(guān)系可得b=$\sqrt{3}$a,由雙曲線C2的離心率為$\frac{c}$,計(jì)算即可得到所求值.

解答 解:由題意可得e=$\frac{c}{a}$=2,
即c=2a,
由c2=a2+b2,可得b2=3a2
可得雙曲線C2的離心率為$\frac{c}$=$\sqrt{\frac{{a}^{2}+^{2}}{^{2}}}$
=$\sqrt{1+\frac{{a}^{2}}{^{2}}}$=$\sqrt{1+\frac{1}{3}}$=$\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的a,b,c的關(guān)系,考查化簡(jiǎn)整理的運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知雙曲線C:$\frac{{x}^{2}}{3}$-y2=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F2的直線與雙曲線C的右支相交于P、Q兩點(diǎn),且點(diǎn)P的橫坐標(biāo)為2,則△PF1Q的周長(zhǎng)為$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2.若左焦點(diǎn)F1關(guān)于其中一條漸近線的對(duì)稱點(diǎn)位于雙曲線上,則該雙曲線的離心率e的值為( 。
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知長(zhǎng)方形ABCD中,AB=3,AD=4,現(xiàn)將長(zhǎng)方形沿對(duì)角線BD折起,使AC=a,得到一個(gè)四面體A-BCD,如圖所示.
(1)試問:在折疊的過程中,直線AB與CD能否垂直?若能,求出相應(yīng)的a值;若不能,請(qǐng)說明理由.
(2)求四面體A-BCD體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)y=f(x)=|x-1|-mx,若關(guān)于x的不等式f(x)<0解集中的整數(shù)恰為3個(gè),則實(shí)數(shù)m的取值范圍為   ( 。
A.$\frac{2}{3}<m≤\frac{3}{4}$B.$\frac{3}{4}<m≤\frac{4}{5}$C.$\frac{2}{3}<m<\frac{3}{4}$D.$\frac{3}{4}<m<\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對(duì)角線AC折起得三棱錐,點(diǎn)M是棱BC的中點(diǎn),DM=3$\sqrt{2}$.
(1)求證:平面ABC⊥平面MDO;
(2)求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知公差不為零的等差數(shù)列{an},滿足a1+a3+a5=9,且a1,a4,a16成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}{a_{n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.有2名男生3名女生,從中選3人去敬老院打掃衛(wèi)生,要求必須有男生,則不同的選法有9種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.i是虛數(shù)單位,滿足(1+2i)z=-3+4i的復(fù)數(shù)z=(  )
A.1-2iB.-$\frac{11}{5}$+2iC.1+2iD.-4+2i

查看答案和解析>>

同步練習(xí)冊(cè)答案