19.在等差數(shù)列{an}中,若a2=3,a5=9,則公差d=( 。
A.1B.2C.3D.4

分析 由題意和等差數(shù)列的通項(xiàng)公式求出公差即可.

解答 解:因?yàn)閍2=3,a5=9,
所以等差數(shù)列{an}的公差d=$\frac{{a}_{5}-{a}_{2}}{5-2}$=2,
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn):$\sqrt{x+3}$-2$\sqrt{x}$-$\frac{1}{\sqrt{x+3}+\sqrt{x}}$,再計(jì)算當(dāng)x=1時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在三棱柱ABC-A1B1C1中,CA=CB,側(cè)面ABB1A1是邊長(zhǎng)為2的正方形,點(diǎn)E,F(xiàn)分別在線(xiàn)段AA1、A1B1上,且AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,CE⊥EF.
(Ⅰ)證明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直線(xiàn)AC1與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i(i是虛數(shù)單位),求z+2z2+3z3+4z4+5z5+6z6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿(mǎn)足a1+a3=8,a2+a4=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}和等比數(shù)列{bn}滿(mǎn)足b1=a1-1,b3=a3+3,(n為正整數(shù))且{bn}的公比q>0,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax2-2ax+b(a>0)在區(qū)間[-1,3]上的最大值為5,最小值為1.
(1)求a,b的值及f(x)的解析式;
(2)設(shè)g(x)=$\frac{f(x)}{x}$,若不等式g(3x)-t•3x≥0在x∈[0,2]上有解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\frac{lnx}{x+a}$,已知曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)2x+y-3=0平行,則a的值為(  )
A.-1或$-\frac{3}{2}$B.$-\frac{3}{2}$C.$-\frac{1}{2}$D.1或$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x-3y≤-2}\end{array}\right.$,則z=x-y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求和:Sn=1+(1+q)+(1+q+q2)+…+(1+q+q2+…+qn

查看答案和解析>>

同步練習(xí)冊(cè)答案