【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓相交于兩點(diǎn)且.求證: 的面積為定值.

【答案】(1;(2.

【解析】試題分析:(1)由橢圓的離心率為,圓心到直線的距離為等于聯(lián)立方程組可求解,從而求得橢圓方程;(2)把直線的方程和橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出直線和橢圓的兩交點(diǎn)橫坐標(biāo)的和與積,代入直線方程得到縱坐標(biāo)的積,結(jié)合得到斜率的關(guān)系,利用弦長(zhǎng)公式求出,利用點(diǎn)到直線的距離公式求出點(diǎn)到直線的距離,把三角形的面積表示為關(guān)于的代數(shù)式,整理后得到結(jié)果為定值.

試題解析:解:(1)由題意知,,即

,

,橢圓的方程為

2)設(shè),由

,

, ,, ,8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿足 , ),稱數(shù)列數(shù)列,記為其前項(xiàng)和.

(Ⅰ)寫出一個(gè)滿足,且數(shù)列;

(Ⅱ)若, ,證明:若數(shù)列是遞增數(shù)列,則;反之,若,則數(shù)列是遞增數(shù)列;

(Ⅲ)對(duì)任意給定的整數(shù)),是否存在首項(xiàng)為0的數(shù)列,使得?如果存在,寫出一個(gè)滿足條件的數(shù)列;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列正確命題有__________

①“”是“”的充分不必要條件

②如果命題“”為假命題,則中至多有一個(gè)為真命題

③設(shè),若,則的最小值為

④函數(shù)上存在,使,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)相鄰兩對(duì)稱軸間的距離為,若將的圖像先向左平移個(gè)單位,再向下平移1個(gè)單位,所得的函數(shù)為奇函數(shù).

(1)求的解析式,并求的對(duì)稱中心;

(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了了解這次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請(qǐng)你根據(jù)尚未完成的頻率分布表和頻率分布直方圖,回答下面問(wèn)題:

(1)結(jié)合圖表信息,補(bǔ)全頻率分布直方圖;

(2)對(duì)于參加這次競(jìng)賽的900名學(xué)生,估計(jì)成績(jī)不低于76分的約有多少人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和

1)計(jì)算,,;

2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某種微生物的生長(zhǎng)規(guī)律,需要了解環(huán)境溫度)對(duì)該微生物的活性指標(biāo)的影響,某實(shí)驗(yàn)小組設(shè)計(jì)了一組實(shí)驗(yàn),并得到如表的實(shí)驗(yàn)數(shù)據(jù):

環(huán)境溫度

1

2

3

4

5

6

7

活性指標(biāo)

(Ⅰ)由表中數(shù)據(jù)判斷關(guān)于的關(guān)系較符合還是,并求關(guān)于的回歸方程(,取整數(shù));

(Ⅱ)根據(jù)(Ⅰ)中的結(jié)果分析:若要求該種微生物的活性指標(biāo)不能低于,則環(huán)境溫度應(yīng)不得高于多少?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,分別為角的對(duì)邊,設(shè).

(1)若,且,求角的大小;

(2)若,求角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中平面,且,

(1)求證:;

(2)在線段上,是否存在一點(diǎn),使得二面角的大小為45°,如果存在,求與平面所成角的正弦值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案