已知分別是中角的對邊,且,
⑴求角的大小;⑵若,求的值.

(1);(2).

解析試題分析:(1)利用正弦定理的變式代入原式的兩邊可得邊的關(guān)系,再用余弦定理求解即可;(2)利用正弦定理的變式代入左右兩邊,化為角的關(guān)系求解.此兩小題充分考查了正弦定理邊化角,角化邊的功能.
試題解析:(1)由已知條件及正弦定理,得:,則,根據(jù)余弦定理的推論,得,又,所以.
(2)因為,由正弦定理,得,且,所以有,整理得:,從而得:.
考點:1,正弦定理,余弦定理及其變;2,三角變換基本公式,如兩角差的正弦公式,商數(shù)關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的內(nèi)角的對邊分別,,若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,
且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在ΔABC中,角A、B、C所對的邊分別為,且,,.
(1)求的值;(2)求ΔABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,且
(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)M是弧度為的∠AOB的角平分線上的一點,且OM=1,過M任作一直線與∠AOB的兩邊分別交OA、OB于點E,F(xiàn),記∠OEM=x.
(1)若時,試問x的值為多少?(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,∠A,∠B,∠C所對的邊分別是a、b、c,不等式≥0對一切實數(shù)恒成立.
(1)求cosC的取值范圍;
(2)當(dāng)∠C取最大值,且△ABC的周長為6時,求△ABC面積的最大值,并指出面積取最大值時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,是三個內(nèi)角的對邊,關(guān)于的不等式的解集是空集.
(1)求角的最大值;
(2)若,的面積,求當(dāng)角取最大值時,的值.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,A、B、C是三角形的三內(nèi)角,是三內(nèi)角對應(yīng)的三邊,已知.(1)求角A的大小;(2)若,且△ABC的面積為,求的值.

查看答案和解析>>

同步練習(xí)冊答案