15.已知某幾何體的正視圖和側(cè)視圖均如圖所示,則該幾何體的俯視圖不可能為(  )
A.B.C.D.

分析 幾何體為椎體與柱體的組合體,分四種情況進(jìn)行判斷.

解答 解:由主視圖和側(cè)視圖可知幾何體為椎體與柱體的組合體,
(1)若幾何體為圓柱與圓錐的組合體,則俯視圖為A,
(2)若幾何體為棱柱與圓錐的組合體,則俯視圖為B,
(3)若幾何體為棱柱與棱錐的組合體,則俯視圖為C,
(4)若幾何體為圓柱與棱錐的組合體,則俯視圖為

故選:D.

點(diǎn)評(píng) 本題考查了簡單幾何體的三視圖,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,長軸長為$2\sqrt{2}$,離心率為$\frac{\sqrt{2}}{2}$,斜率為k,直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且$\overrightarrow{AP}=3\overrightarrow{PB}$.
(I)求橢圓方程;
(Ⅱ)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,B=$\frac{π}{3}$,3sinC=8sinA,且△ABC的面積為6$\sqrt{3}$,則△ABC的周長為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,若直線l:y=-$\frac{\sqrt{3}}{3}$x+1經(jīng)過橢圓C的右焦點(diǎn)及上頂點(diǎn).
(l)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′(A′與B不重合),則直線A′B與x軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,在三角形ABC中,AM:AB=1:3,AN:AC=1:4,BN與CM相交于P,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點(diǎn)A(2,3)、B(x,1),且|AB|=$\sqrt{13}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和為Sn
(1)若對(duì)任意正整數(shù)n,k(n>k),都有$\sqrt{{S}_{n+k}}$+$\sqrt{{S}_{n-k}}$=2$\sqrt{{S}_{n}}$成立,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,記Tn為數(shù)列{$\frac{1}{{{a}_{n+1}a}_{n}}$}的前n項(xiàng)和,是否存在正整數(shù)n,使得Tn<$\frac{1007}{2016}$?若存在,求n的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.現(xiàn)有5張卡片,其正反兩面分別寫有0與1、2與3、4與5、6與7、8與9,用這五漲卡片可以組成不同的四位數(shù)的個(gè)數(shù)為4536.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知tan($\frac{π}{4}$+α)=3$+2\sqrt{2}$,求$\frac{1-sin2α}{cos2α}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案