19.已知等比數(shù)列{an}的前4項(xiàng)和S4=5,且4a1$,\;\frac{3}{2}{a_2}\;,\;{a_2}$成等差數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為2,公差為-a1的等差數(shù)列,其前n項(xiàng)和為Tn,求滿足Tn-1>0的最大正整數(shù)n.

分析 (Ⅰ)通過(guò)$4{a_1}\;,\;\frac{3}{2}{a_2}\;,\;{a_2}$成等差數(shù)列可得公比q=2,利用${S_4}=\frac{{{a_1}(1-{2^4})}}{1-2}=5$得${a_1}=\frac{1}{3}$,進(jìn)而可得結(jié)論;
(Ⅱ)通過(guò)(Ⅰ)得公差,進(jìn)而可得通項(xiàng)及前n項(xiàng)和的表達(dá)式,解不等式Tn-1>0即可.

解答 解:(Ⅰ)根據(jù)題意,設(shè){an}的公比為q,
∵$4{a_1}\;,\;\frac{3}{2}{a_2}\;,\;{a_2}$成等差數(shù)列,
∴4a1+a2=3a2
整理得2a1=a2,即2a1=a1q,解得q=2.
又${S_4}=\frac{{{a_1}(1-{2^4})}}{1-2}=5$,解得${a_1}=\frac{1}{3}$.
∴${a_n}=\frac{1}{3}×{2^{n-1}}$.
(Ⅱ)由(Ⅰ)得-a1=$-\frac{1}{3}$,
∴${b_n}=2+(n-1)(-\frac{1}{3})=\frac{7-n}{3}$.
Tn=$\frac{{2+\frac{7-n}{3}}}{2}×n=\frac{(13-n)n}{6}$,
又∵Tn-1>0,∴$\frac{[13-(n-1)](n-1)}{6}>0$,
整理得(n-1)(n-14)<0,
解得1<n<14.
故滿足Tn-1>0的最大正整數(shù)為13.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)及求和等知識(shí),注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左右頂點(diǎn)為A1,A2,左右焦點(diǎn)為F1,F(xiàn)2,P為雙曲線C上異于頂點(diǎn)的一動(dòng)點(diǎn),直線PA1斜率為k1,直線PA2斜率為k2,且k1k2=1,又△PF1F2內(nèi)切圓與x軸切于點(diǎn)(1,0),則雙曲線方程為x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求|OR|+|OS|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,△ABC的頂點(diǎn)都在圓O上,點(diǎn)P在BC的延長(zhǎng)線上,且PA與圓O切于點(diǎn)A.
(1)若∠ACB=70°,求∠BAP的度數(shù);
(2)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{PC}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,三棱柱ABC-DEF的側(cè)面BEFC是邊長(zhǎng)為1的正方形,側(cè)面BEFC⊥側(cè)面ADEB,AB=4,∠DEB=60°,G是DE的中點(diǎn).
(Ⅰ)求證:CE∥平面AGF;
(Ⅱ)求證:GB⊥平面BEFC;
(Ⅲ)在線段BC上是否存在一點(diǎn)P,使二面角P-GE-B為45°,若存在,求BP的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.某校開(kāi)展繪畫比賽,9位評(píng)委為參賽作品A給出的分?jǐn)?shù)如莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91,但復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清.若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,則f(f(4))=5;若f(a)=-1,則a=1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知邊長(zhǎng)為1的等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為$\frac{{\sqrt{3}}}{3}$,若A、B、C、D、E在同一球面上,則此球的體積為( 。
A.B.$\frac{{8\sqrt{2}}}{3}$πC.$\sqrt{2}$πD.$\frac{{\sqrt{2}}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓M:(x+2)2+y2=32及定點(diǎn)N(2,0),點(diǎn)P是圓M上的動(dòng)點(diǎn),點(diǎn)G在MP上,且滿足|GP|=|GN|,G點(diǎn)的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)Q點(diǎn)是曲線C上異于曲線C與x軸交點(diǎn)的任意一點(diǎn),試問(wèn)在x軸上是否存在兩個(gè)定點(diǎn)A,B使直線QA,QB的斜率之積為定值?若存在,求出所有符合條件的兩個(gè)定點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案