2.已知A,B∈[-$\frac{π}{2}$,$\frac{π}{2}$],且cosA+cosB=cosAcosB,則sin(A-B)的值為0.

分析 由已知可得(cosA-1)(cosB-1)=1,結(jié)合范圍A,B∈[-$\frac{π}{2}$,$\frac{π}{2}$],可得cosA,cosB∈[0,1],從而求得cosA=cosB=0,利用兩角差的正弦函數(shù)公式即可求值得解.

解答 解:∵cosA+cosB=cosAcosB,
∴(cosA-1)(cosB-1)=1,
∵A,B∈[-$\frac{π}{2}$,$\frac{π}{2}$],
∴cosA,cosB∈[0,1],
∴cosA=cosB=0,
∴sin(A-B)=sinAcosB-cosAsinB=0.
故答案為:0.

點(diǎn)評(píng) 本題主要考查了兩角差的正弦函數(shù)公式,余弦函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,考查了轉(zhuǎn)化思想,技巧性較強(qiáng),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(x,2)且$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),則x等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知點(diǎn)A(-1,1),B(3,3)是圓C的一條直徑的兩個(gè)端點(diǎn),又點(diǎn)M在圓C上運(yùn)動(dòng),點(diǎn)N(4,-2),求線段MN的中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求由直線x=1,x=3,y=0和曲線y=3x2所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F2(1,0),且經(jīng)過(guò)點(diǎn)(1,-$\frac{3}{2}$).
(1)求橢圓的方程;
(2)設(shè)直線y=kx(k>0)與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn),問(wèn)是否存在以MN為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.當(dāng)x∈[-2,0)時(shí),不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是a≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cos2C=-$\frac{1}{4}$,且a2+b2<c2
(1)求sinC的值;
(2)當(dāng)a=2,2sinA=sinC時(shí).求b及c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{{\sqrt{2}}}{2}$,焦距為2
(1)求橢圓C的方程;
(2)已知橢圓C與直線x-y+m=0相交于不同的兩點(diǎn)M、N,且線段MN的中點(diǎn)不在圓x2+y2=1內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.執(zhí)行如圖所示的程序框圖,當(dāng)輸入n=10,求其運(yùn)行的結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案