10.求由直線x=1,x=3,y=0和曲線y=3x2所圍成的圖形的面積.

分析 由此可得所求面積為函數(shù)y=3x2在區(qū)間[1,3]上的定積分的值,再用定積分計算公式加以運算即可得到本題答案.

解答 解:由題意,由直線x=1,x=3,y=0和曲線y=3x2所圍成的圖形的面積S=${∫}_{1}^{3}$3x2dx=x3${|}_{1}^{3}$=26.

點評 本題求兩條曲線圍成的曲邊圖形的面積,著重考查了定積分的幾何意義和積分計算公式等知識,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}中a1=2,a2=1,an+2=$\left\{\begin{array}{l}{\frac{2{a}_{n+1}}{{a}_{n}},{a}_{n+1}≥2}\\{\frac{4}{{a}_{n}},{a}_{n+1}<2}\end{array}\right.$(n∈N*),Sn是數(shù)列{an}的前n項和,則S778=2020.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,若a=$\sqrt{3}$,b=1,c=2,則△ABC的面積等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知sin(θ+$\frac{π}{2}$)<0,cos(θ-$\frac{π}{2}$)>0,則下列不等式關(guān)系必定成立的是( 。
A.tan2$\frac{θ}{2}$<1B.tan2$\frac{θ}{2}$>1C.sin$\frac{θ}{2}$>cos$\frac{θ}{2}$D.sin$\frac{θ}{2}$<cos$\frac{θ}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)y=$\root{3}{{x}^{2}}$-x2+2的圖象在以點(1,y1)為切點的切線與坐標軸所圍成的三角形面積等于( 。,函數(shù)y=x3圖象上過點(1,y2)的切線與兩條坐標軸所圍成的三角形面積等于( 。
A.$\frac{25}{6}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{1}{24}$D.$\frac{15}{4}$
E.$\frac{7}{3}$F.$\frac{15}{4}$或$\frac{7}{3}$      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知平面α∩β=l,直線a?α,a∩l=A,直線b?β,b∩l=B,A與B不重合,求證:直線a與b是異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知A,B∈[-$\frac{π}{2}$,$\frac{π}{2}$],且cosA+cosB=cosAcosB,則sin(A-B)的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如果直線L1:y=2x+1與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$相交于A、B兩點,直線L2與該橢圓相交于C、D兩點,且ABCD是平行四邊形,則L2的方程是y=2x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知全集U={x|-6≤x≤5},M={x|-3≤x≤2},N={x|0<x<2}.
(Ⅰ)求M∪N;
(Ⅱ)求∁U(M∩N).

查看答案和解析>>

同步練習冊答案