13.一個幾何體的三視圖如圖所示,設(shè)該幾何體的體積為V,則3(V+$\frac{2π}{3}$-16)的值為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

分析 由三視圖可得,直觀圖為上部是四棱錐,中間為直四棱柱,挖去一個內(nèi)切半球,求出體積,即可得出結(jié)論.

解答 解:由三視圖可得,直觀圖為上部是四棱錐,中間為直四棱柱,挖去一個內(nèi)切半球.
V=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{3}+2×2×4-\frac{1}{2}×\frac{4}{3}π×{1}^{3}$=$\frac{2}{3}\sqrt{3}$+16-$\frac{2π}{3}$,
∴3(V+$\frac{2π}{3}$-16)=2$\sqrt{3}$.
故選:B.

點(diǎn)評 本題考查由三視圖求直觀圖的體積,考查學(xué)生的計算能力,確定直觀圖的形狀是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某工廠生產(chǎn)A,B兩種配套產(chǎn)品,其中每天生產(chǎn)x噸A產(chǎn)品,需生產(chǎn)x+2噸B產(chǎn)品.已知生產(chǎn)A產(chǎn)品的成本與產(chǎn)量的平方成正比.經(jīng)測算,生產(chǎn)1噸A產(chǎn)品需要4萬元,而B產(chǎn)品的成本為每噸8萬元.
(1)求生產(chǎn)A,B兩種配套產(chǎn)品的平均成本的最小值;
(2)若原料供應(yīng)商對這種小型工廠供貨辦法使得該工廠每天生產(chǎn)A產(chǎn)品的產(chǎn)量x在[0,$\frac{1}{2}$]∪[2,8]范圍內(nèi),那么在這種情況下,該工廠應(yīng)生產(chǎn)A產(chǎn)品多少噸,才可使平均成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某種飲料每箱裝4聽,如果其中有一聽不合格,從一箱中隨機(jī)抽取兩聽,則抽到不合格品的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(diǎn)F1、F2依次為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的左右焦點(diǎn),|F1F2|=6,B1(0,-b),B2(0,b).
(1)若$a=\sqrt{5}$,以$\overrightarrow d=(3,-4)$為方向向量的直線l經(jīng)過B1,求F2到l的距離;
(2)若雙曲線C上存在點(diǎn)P,使得$\overrightarrow{P{B_1}}•\overrightarrow{P{B_2}}=-2$,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,△PAC是等邊三角形,已知BC=2AC=4,AB=2$\sqrt{5}$.
(Ⅰ)求證:平面PAC⊥平面CBP;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個棱長為1的正方體被一個平面截去一部分后,剩余部分的三視圖如圖,則剩余部分的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),直線l與x,y軸的正半軸分別交于A,B兩點(diǎn).
(1)求△OAB內(nèi)切圓C的普通方程,并化為參數(shù)方程及極坐標(biāo)方程;
(2)設(shè)P是圓C上任一點(diǎn),求|PO|2+|PA|2+|PB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.16B.20+6πC.14+2πD.20+2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若復(fù)平面內(nèi)一個正方形的三個頂點(diǎn)對應(yīng)的復(fù)數(shù)分別為z1=1+2i,z2=-2+i,z3=-1-2i,則正方形第四個頂點(diǎn)對應(yīng)的復(fù)數(shù)為2-i.

查看答案和解析>>

同步練習(xí)冊答案