若集合A={0,1,2},B={-2,1,2,3},則A∪B=
 
考點:并集及其運算
專題:集合
分析:直接由并集的運算得答案.
解答: 解:∵集合A={0,1,2},B={-2,1,2,3},
∴A∪B={0,1,2}∪{-2,1,2,3}={-2,0,1,2,3}.
故答案為:{-2,0,1,2,3}.
點評:本題考查了并集及其運算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把正方形ABCD沿對角線AC折起,當(dāng)以A,B,C,D四點為頂點的三棱錐體積最大時,直線BD和平面ABC所成的角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x-1),g(x)=lg(x2+1)
(1)求f(x)和g(x)的定義域;
(2)判斷g(x)奇偶性,并證明你的結(jié)論;
(3)判斷f(x)在其定義域上的單調(diào)性?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)定義域為R,且對定義域內(nèi)的一切實數(shù)x,y都有f(x+y)=f(x)+f(y),又當(dāng)x>0時,有f(x)<0,且f(1)=-
1
2
,則f(x)在區(qū)間[-2,6]上的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)y=f(x),x∈D(D為定義域)圖象上的點到坐標(biāo)原點的距離為函數(shù)的y=f(x),x∈D的模.若模存在最大值,則此最大值稱之為函數(shù)y=f(x),x∈D的長距;若模存在最小值,則此最小值稱之為函數(shù)y=f(x),x∈D的短距.
(1)分別判斷函數(shù)f1(x)=
1
x
與f2(x)=
-x2-4x+5
是否存在長距與短距,若存在,請求出;
(2)對于任意x∈[1,2]是否存在實數(shù)a,使得函數(shù)f(x)=
2x|x-a|
的短距不小于2,若存在,請求出a的取值范圍;不存在,則說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:
a
=(
3
sinx,cosx),
b
=(cosx,cosx),f(x)=2
a
b
(x∈R).
(1)求f(x)關(guān)于x的表達式,并求f(x)的最小正周期;
(2)已知g(x)=f(x)+2m-1,若x∈[0,
π
2
]時,g(x)的最小值為5,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知Sn=2an-2n+1(n∈N*).
(1)求a1的值,并證明數(shù)列{
an
2n
}是等差數(shù)列;
(2)設(shè)bn=log2
an
n+1
,數(shù)列{
1
bn
}的前n項和為Bn,若存在整數(shù)m,使對任意n∈N*且n≥2,都有B3n-Bn
m
20
成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中滿足a1=15,
an+1-an
n
=2,則
an
n
的最小值為( 。
A、10
B、2
15
-1
C、9
D、
27
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(2,1)的直線l與圓C:(x-1)2+y2=4交于A,B兩點,當(dāng)∠ACB最小時,直線l的方程為
 

查看答案和解析>>

同步練習(xí)冊答案