2.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{π}{3}$的兩個(gè)單位向量,非零向量$\overrightarrow$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,x,y∈R,若x+2y=2,則|$\overrightarrow$|的最小值為1.

分析 計(jì)算${\overrightarrow}^{2}$,將x=2-2y代入得到關(guān)于y的函數(shù),求此函數(shù)的最小值.

解答 解:$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=cos$\frac{π}{3}$=$\frac{1}{2}$.$\overrightarrow$2=x2+y2+2xy$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=x2+y2+xy.
∵x+2y=2,∴x=2-2y.
∴$\overrightarrow$2=(2-2y)2+y2+(2-2y)y=3y2-6y+4=3(y-1)2+1.
∴當(dāng)y=1時(shí),$\overrightarrow$2取得最小值1.
∴|$\overrightarrow$|的最小值為1.
故答案為:1.

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積的運(yùn)算,二次函數(shù)的最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若方程E:$\frac{x^2}{1-m}-\frac{y^2}{m-2}$=1表示焦點(diǎn)在y軸上的雙曲線,則實(shí)數(shù)m的取值范圍為( 。
A.(1,2)B.(-∞,1)∪(2,+∞)C.(-∞,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)$P(-\sqrt{3},-1)$的直線l與圓x2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍是( 。
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\sqrt{3}]$C.$[0,\frac{{\sqrt{3}}}{3}]$D.$[0,\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.函數(shù)f(x)=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)指出函數(shù)f(x)的值域;
(Ⅱ)求函數(shù)f(x)的解析式;
(Ⅲ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+6)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$|\overrightarrow a|=4$,$|\overrightarrow b|=5$,$|\overrightarrow a+\overrightarrow b|=\sqrt{21}$,則$\overrightarrow a•\overrightarrow b$=( 。
A.-8B.-10C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知a>0,b∈R,函數(shù)f(x)=4ax2-2bx-a+b的定義域?yàn)閇0,1].
(Ⅰ)當(dāng)a=1時(shí),函數(shù)f(x)在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求b的取值范圍;
(Ⅱ)記f(x)的最大值為M,證明:f(x)+M>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)$\overrightarrow{AB}$=(7,0),$\overrightarrow{BC}$=(0,3),則$\overrightarrow{AC}$•$\overrightarrow{BC}$等于( 。
A.0B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知銳角△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且2csinB=$\sqrt{3}$b.
(1)求角C的大小;
(2)若邊c=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬(wàn)人受災(zāi),5.6萬(wàn)人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如下頻率分布直方圖(如圖):
(I)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過(guò)6000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,求這兩戶在同一分組的概率;
(Ⅱ)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過(guò)4000元經(jīng)濟(jì)損失超過(guò)4000元合計(jì)
捐款超過(guò)500元30939         
捐款不超過(guò)500元5611
合計(jì)351550
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊(cè)答案