分析 (Ⅰ)直接標(biāo)出點F,G,H的位置.
(Ⅱ)先證BCHE為平行四邊形,可知BE∥平面ACH,同理可證BG∥平面ACH,即可證明平面BEG∥平面ACH.
(Ⅲ)連接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可證EG⊥平面BFHD,從而可證DF⊥EG,同理DF⊥BG,即可證明DF⊥平面BEG.
解答 解:(Ⅰ)點F,G,H的位置如圖所示.
(Ⅱ)平面BEG∥平面ACH,證明如下:
∵ABCD-EFGH為正方體,
∴BC∥FG,BC=EH,
又FG∥EH,F(xiàn)G=EH,
∴BC∥EH,BC=EH,
∴BCHE為平行四邊形.
∴BE∥CH,
又CH?平面ACH,BE?平面ACH,
∴BE∥平面ACH,
同理BG∥平面ACH,
又BE∩BG=B,
∴平面BEG∥平面ACH.
(Ⅲ)連接FH,
∵ABCD-EFGH為正方體,
∴DH⊥EG,
又∵EG?平面EFGH,
∴DH⊥EG,
又EG⊥FH,EG∩FH=O,
∴EG⊥平面BFHD,
又DF?平面BFHD,
∴DF⊥EG,
同理DF⊥BG,
又∵EG∩BG=G,
∴DF⊥平面BEG.
點評 本題主要考查了簡單空間圖形的直觀圖、空間線面平行與垂直的判定與性質(zhì)等基礎(chǔ)知識,考查了空間想象能力和推理論證能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {1,2} | C. | {1,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{2}$ | B. | $\frac{49}{2}$ | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com