4.一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(Ⅰ)請按字母F,G,H標(biāo)記在正方體相應(yīng)地頂點處(不需要說明理由)
(Ⅱ)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論.
(Ⅲ)證明:直線DF⊥平面BEG.

分析 (Ⅰ)直接標(biāo)出點F,G,H的位置.
(Ⅱ)先證BCHE為平行四邊形,可知BE∥平面ACH,同理可證BG∥平面ACH,即可證明平面BEG∥平面ACH.
(Ⅲ)連接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可證EG⊥平面BFHD,從而可證DF⊥EG,同理DF⊥BG,即可證明DF⊥平面BEG.

解答 解:(Ⅰ)點F,G,H的位置如圖所示.
(Ⅱ)平面BEG∥平面ACH,證明如下:
∵ABCD-EFGH為正方體,
∴BC∥FG,BC=EH,
又FG∥EH,F(xiàn)G=EH,
∴BC∥EH,BC=EH,
∴BCHE為平行四邊形.
∴BE∥CH,
又CH?平面ACH,BE?平面ACH,
∴BE∥平面ACH,
同理BG∥平面ACH,
又BE∩BG=B,
∴平面BEG∥平面ACH.
(Ⅲ)連接FH,
∵ABCD-EFGH為正方體,
∴DH⊥EG,
又∵EG?平面EFGH,
∴DH⊥EG,
又EG⊥FH,EG∩FH=O,
∴EG⊥平面BFHD,
又DF?平面BFHD,
∴DF⊥EG,
同理DF⊥BG,
又∵EG∩BG=G,
∴DF⊥平面BEG.

點評 本題主要考查了簡單空間圖形的直觀圖、空間線面平行與垂直的判定與性質(zhì)等基礎(chǔ)知識,考查了空間想象能力和推理論證能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,原點O到經(jīng)過兩點(c,0),(0,b)的直線的距離為$\frac{1}{2}$c.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,AB是圓M:(x+2)2+(y-1)2=$\frac{5}{2}$的一條直徑,若橢圓E經(jīng)過A、B兩點,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={1,2,3},B={1,3},則A∩B=( 。
A.{2}B.{1,2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$處取得極值.
(Ⅰ)確定a的值;
(Ⅱ)若g(x)=f(x)ex,討論g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}2x+y≤10\\ x+2y≤14\\ x+y≥6\end{array}\right.$,則xy的最大值為( 。
A.$\frac{25}{2}$B.$\frac{49}{2}$C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.根據(jù)如圖框圖,當(dāng)輸入x為6時,輸出的y=( 。
A.1B.2C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨機(jī)抽取一個年份,對西安市該年4月份的天氣情況進(jìn)行統(tǒng)計,結(jié)果如下:
(Ⅰ)在4月份任取一天,估計西安市在該天不下雨的概率;
(Ⅱ)西安市某學(xué)校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.
日期123456789101112131415
天氣
日期161718192021222324252627282930
天氣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若a,b是函數(shù)f(x)=x2-px+q(p>0,q>0)的兩個不同的零點,且a,b,-2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時間之和不超過12小時.假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機(jī)變量,其分布列為
W121518
P0.30.50.2
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機(jī)變量.
(1)求Z的分布列和均值;
(2)若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.

查看答案和解析>>

同步練習(xí)冊答案