2.已知函數(shù)f(x)=$\left\{\begin{array}{l}(a-3)x-1,x≤1\\{log_a}x,x>1\end{array}$,若f(x)在R上單調(diào)遞增,則實數(shù)a的取值范圍是(3,4].

分析 根據(jù)一次函數(shù)、對數(shù)函數(shù)及分段函數(shù)的單調(diào)性以及增函數(shù)的定義便可得出關(guān)于a的不等式組,解不等式組即可求得實數(shù)a的取值范圍.

解答 解:若f(x)在R上單調(diào)遞增,則:
$\left\{\begin{array}{l}{a-3>0}\\{a>1}\\{(a-3)•1-1≤lo{g}_{a}1}\end{array}\right.$;
解得3<a≤4;
∴實數(shù)a的取值范圍是(3,4].
故答案為:(3,4].

點評 考查一次函數(shù)和對數(shù)函數(shù)的單調(diào)性,以及分段函數(shù)單調(diào)性的判斷,增函數(shù)的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.隨機(jī)變量ξ服從正態(tài)分布N(10,4),若η=ξ+4,則Dη的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中點.
(Ⅰ)求證:AM∥平面PCD.
(Ⅱ)設(shè)點N是線段CD上一動點,當(dāng)直線MN于平面PAB所成的角最大時,求DN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2-x+xlnx,其中a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線垂直于直線x-2y-3=0,求a的值;
(Ⅱ)若f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知{an}為等差數(shù)列,an為定值.則下列各項一定為定值的是(  )
A.SnB.Sn+1C.S2n+1D.S2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題中正確的是?( 。
A.正方形的直觀圖是正方形?
B.平行四邊形的直觀圖是平行四邊形?
C.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知sinx=m-1且x∈R,則m的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={1,x2},B={x},且B⊆A,則實數(shù)x為( 。
A.0B.1C.0或lD.0或-l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知P是拋物線y2=8x上的一個動點,Q是圓(x-3)2+(y-1)2=1上的一個動點,N(2,0)是一個定點,則|PQ|+|PN|的最小值為( 。
A.3B.4C.5D.$\sqrt{2}$+1

查看答案和解析>>

同步練習(xí)冊答案