14.已知sinx=m-1且x∈R,則m的取值范圍是[-1,1].

分析 根據(jù)正弦函數(shù)的值域,求得m的取值范圍.

解答 解:∵sinx=m-1∈[-1,1],且x∈R,可得-1≤m-1≤1,求得0≤m≤2,
故答案為:[-1,1].

點(diǎn)評 本題主要考查正弦函數(shù)的值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R,若對任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,則m的取值范圍為[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,m),且$\overrightarrow a$⊥$\overrightarrow b$,則$|{\overrightarrow b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}(a-3)x-1,x≤1\\{log_a}x,x>1\end{array}$,若f(x)在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(3,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等差數(shù)列{an}中,若a1+a7+a13=6,則S13=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=-x與直線y=k(x+1)(k≠0)相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)k=$\sqrt{2}$時,求|AB|的長;
(2)求證無論k為何值都有OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定義在實(shí)數(shù)集上的奇函數(shù)f(x),當(dāng)x∈(0,1)時,f(x)=$\frac{2^x}{{{4^x}+1}}$.
(1)求函數(shù)f(x)在(-1,1)上的解析式;
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性并加以證明;
(3)當(dāng)λ取何值時,方程f(x)=λ在上(-1,1)有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,A(8,-1),B(4,2),內(nèi)心M(5,0),求BC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$=(5,-2),$\overrightarrow$=(-4,3),$\overrightarrow{c}$=(x,y),若$\overrightarrow{a}$-2$\overrightarrow$+2$\overrightarrow{c}$=0,則$\overrightarrow{c}$等于( 。
A.(1,4)B.($\frac{13}{2}$,4)C.(-$\frac{13}{2}$,4)D.(-$\frac{13}{2}$,-4)

查看答案和解析>>

同步練習(xí)冊答案