A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 3 |
分析 設(shè)出漸近線方程,將x=c分別代入雙曲線的方程和漸近線方程,求得交點A,B,再由中點坐標公式和離心率公式,計算即可得到所求值.
解答 解:由題意可得F(c,0),漸近線方程為y=$\frac{a}$x,
將x=c,代入雙曲線的方程可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
可得A(c,$\frac{^{2}}{a}$);
將x=c代入漸近線方程可得y=$\frac{bc}{a}$,
可得B(c,$\frac{bc}{a}$),
由A為BF的中點,可得$\frac{2^{2}}{a}$=$\frac{bc}{a}$,
化簡可得c=2b,
即c2=4b2=4(c2-a2),
即有c=$\frac{2\sqrt{3}}{3}$a,
即e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故選:A.
點評 本題考查雙曲線的留下來的求法,注意運用聯(lián)立直線方程求得交點和中點坐標公式,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x≤0} | B. | {x|-1<x≤-$\frac{1}{2}$} | C. | {x|-1≤x≤-$\frac{1}{2}$} | D. | {x|-1≤x≤-$\frac{1}{3}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1 | B. | $\frac{x^2}{24}$-$\frac{y^2}{12}$=1 | C. | $\frac{x^2}{3}$-$\frac{y^2}{6}$=1 | D. | $\frac{x^2}{6}$-$\frac{y^2}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24480 | B. | 24380 | C. | 23040 | D. | 23140 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有些相互垂直的兩直線相交 | B. | 有些不相互垂直的兩直線不相交 | ||
C. | 任意相互垂直的兩直線相交 | D. | 任意相互垂直的兩直線不相交 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com