2.已知一個三棱錐的三視圖如圖所示,則該三棱錐的體積( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

分析 由三視圖可知:該幾何體為三棱錐P-ABC.過點P作PO⊥底面ABC,垂足為O.

解答 解:由三視圖可知:該幾何體為三棱錐P-ABC.過點P作PO⊥底面ABC,垂足為O.
則該三棱錐的體積V=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
故選:B.

點評 本題考查了三棱錐的三視圖、體積計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知圓O1:x2+2x+y2=0,圓O2:x2-2x+y2-8=0,動圓P與圓O1外切且和圓O2內切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(1,$\frac{1}{2}$)作直線l交曲線C于A、B兩點,且點M恰好為弦AB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.△ABC中,D為線段BC的中點,AB=2AC=2,tan∠CAD=sin∠BAC,則BC=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知公比為2的等比數(shù)列{an},若a2+a3=2,則a4+a5=( 。
A.$\frac{1}{2}$B.1C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=cos2$\frac{x}{2}$-sin$\frac{x}{2}$cos$\frac{x}{2}$-$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期和值域 
(2)求函數(shù)單調遞減區(qū)間
(3)若f(α)=$\frac{{3\sqrt{2}}}{10}$,求sin 2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,P、Q分別在AB,BC上,且$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BQ}$=$\frac{1}{3}$$\overrightarrow{BC}$,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{PQ}$=( 。
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$B.-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$D.-$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則輸出S的值為(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{6}{7}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.袋中裝有大小相同的4個紅球和6個白球,從中取出4個球.
(1)若取出的球必須是兩種顏色,則有多少種不同的取法?
(2)若取出的紅球個數(shù)不少于白球個數(shù),則有多少種不同的取法?
(3)取出一個紅球記2分,取出一個白球記1分,若取4球的總分不低于5分,則有多少種不同的取法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知{an}是公差為2的等差數(shù)列,若a1,a3,a4成等比數(shù)列,則a2=( 。
A.-4B.-8C.-10D.-6

查看答案和解析>>

同步練習冊答案