分析 (1)由sinB+cosB=$\sqrt{2}$sin$(B+\frac{π}{4})$=$\sqrt{2}$,可得sin$(B+\frac{π}{4})$=1,即可解得B.再利用正弦定理即可得出.
(2)利用sinC=sin(B+A),及其S△ABC=$\frac{1}{2}absinC$,即可得出.
解答 解:(1)在△ABC中,∵sinB+cosB=$\sqrt{2}$sin$(B+\frac{π}{4})$=$\sqrt{2}$,∴sin$(B+\frac{π}{4})$=1,又B∈(0,π),∴B+$\frac{π}{4}$=$\frac{π}{2}$,解得B=$\frac{π}{4}$.
由正弦定理可得:$\frac{\sqrt{2}}{sinA}$=$\frac{2}{sin\frac{π}{4}}$,解得sinA=$\frac{1}{2}$,∵a<b,∴A=$\frac{π}{6}$.
(2)∵sinC=sin(B+A)=sinBcosA+cosBsinA=$\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}$+$\frac{\sqrt{2}}{2}×\frac{1}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
∴S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×\sqrt{2}×2×$$\frac{\sqrt{6}+\sqrt{2}}{4}$=$\frac{1+\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查了正弦定理、和差公式、三角形面積計(jì)算公式、誘導(dǎo)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 16 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 5 | 10 | 15 | 47 | x |
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 2 | 3 | 10 | y | 2 |
女性 | 男性 | 總計(jì) | |
網(wǎng)購達(dá)人 | 50 | 5 | 55 |
非網(wǎng)購達(dá)人 | 30 | 15 | 45 |
總計(jì) | 80 | 20 | 100 |
P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15078 | B. | 14056 | C. | 13174 | D. | 12076 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com