分析 事件“第一次摸到紅球且第二次也摸到紅球”的概率等于事件“第一次摸到紅球”的概率乘以事件“在第一次摸出紅球的條件下,第二次也摸到紅球”的概率.根據(jù)這個原理,可以分別求出“第一次摸到紅球”的概率和“第一次摸到紅球且第二次也摸到紅球”的概率,再用公式可以求出要求的概率.
解答 解:先求出“第一次摸到紅球”的概率為:P1=$\frac{3}{5}$.
設“在第一次摸出紅球的條件下,第二次也摸到紅球”的概率是P2
再求“第一次摸到紅球且第二次也摸到紅球”的概率為P=$\frac{3×2}{5×4}$=$\frac{3}{10}$,
根據(jù)條件概率公式,得:P2=$\frac{P}{{P}_{1}}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題考查了概率的計算方法,主要是考查了條件概率與獨立事件的理解,看準確事件之間的聯(lián)系,正確運用公式,是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | $1+\frac{{\sqrt{3}}}{2}$ | D. | $\frac{π}{3}+\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-\sqrt{e},+∞)$ | B. | $(-\frac{1}{{\sqrt{e}}},\sqrt{e})$ | C. | $(-\sqrt{e},\frac{1}{{\sqrt{e}}})$ | D. | $(-\frac{1}{{\sqrt{e}}},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12π | B. | $\frac{32}{3}$π | C. | 4$\sqrt{3}$π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com