分析 (Ⅰ)由已知得∠PBC=60°,可得∠PBA=30°,在△PBA中,由余弦定理即可得出.
(II)設(shè)∠PBA=α,由已知得∠PCB=α,PB=2sinα,在△PBA中,由正弦定理得$\frac{{2\sqrt{3}}}{sin150°}=\frac{2sinα}{{sin({30°-α})}}$,化簡整理即可得出.
解答 解:(Ⅰ)由已知得∠PBC=60°,∴∠PBA=30°,
在△PBA中,由余弦定理得$P{A^2}={({2\sqrt{3}})^2}+1-2×2\sqrt{3}×1×cos30°=7$,
∴$PA=\sqrt{7}$.
(Ⅱ)設(shè)∠PBA=α,由已知得∠PCB=α,PB=2sinα,
在△PBA中,由正弦定理得$\frac{{2\sqrt{3}}}{sin150°}=\frac{2sinα}{{sin({30°-α})}}$,化簡得$\sqrt{3}cosα$=4sinα,
∴tanα=$\frac{\sqrt{3}}{4}$,∴tan∠PBA=$\frac{\sqrt{3}}{4}$.
點評 本題考查了正弦定理余弦定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 81$\sqrt{3}$ | B. | $\frac{81}{2}$$\sqrt{3}$ | C. | $\frac{81}{4}$$\sqrt{3}$ | D. | $\frac{81}{16}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 從3個不同的小球中,取出2個排成一列 | |
B. | 老師在排座位時將甲、乙兩位同學(xué)安排為同桌 | |
C. | 在電視節(jié)目中,主持人從100位幸運觀眾中選出2名幸運之星 | |
D. | 從某班40名學(xué)生中選取5名學(xué)生,并從低到高依次排列 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com