5.已知二次函數(shù)f(x)滿足f(2x)+f(x+1)=5x2-x+4;
(1)求f(x)的解析式;
(2)若方程f(x)+m=3x-1在區(qū)間(0,3)上總有兩個(gè)不相等的實(shí)數(shù)根,求m的范圍.

分析 (1)設(shè)f(x)=ax2+bx+c,根據(jù)條件化簡(jiǎn)等式列出方程組,求出a、b、c的值,可得f(x);
(2)由(1)化簡(jiǎn)方程f(x)+m=3x-1,將方程的根問題轉(zhuǎn)化為:函數(shù)g(x)=x2$-\frac{10}{3}$x+$\frac{8}{3}$+m在(0,3)上總有兩個(gè)不同的零點(diǎn),根據(jù)二次函數(shù)的圖象和條件列出不等式組,求出m的范圍.

解答 解:(1)設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)
∵f(2x)+f(x+1)=5x2-x+4
∴4ax2+2bx+c+a(x+1)2+b(x+1)+c=5x2-x+4
則5ax2+3bx+a+b+2c=5x2-x+4,
∴$\left\{\begin{array}{l}{5a=5}\\{3b=-1}\\{a+b+2c=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-\frac{1}{3}}\\{c=\frac{5}{3}}\end{array}\right.$,
∴f(x)=x2$-\frac{1}{3}$x+$\frac{5}{3}$;
(2)由(1)得,方程f(x)+m=3x-1為x2$-\frac{10}{3}$x+$\frac{8}{3}$+m=0,
∵方程f(x)+m=3x-1在(0,3)上總有兩個(gè)不相等的實(shí)數(shù)根,
∴函數(shù)g(x)=x2$-\frac{10}{3}$x+$\frac{8}{3}$+m在(0,3)上總有兩個(gè)不同的零點(diǎn),
∴$\left\{\begin{array}{l}{△={(-\frac{10}{3})}^{2}-4×(\frac{8}{3}+m)>0}\\{g(0)=\frac{8}{3}+m>0}\\{g(3)=9-10+\frac{8}{3}+m>0}\end{array}\right.$,解得$-\frac{5}{3}<m<-\frac{1}{9}$,
則實(shí)數(shù)m的范圍是$(-\frac{5}{3},-\frac{1}{9})$.

點(diǎn)評(píng) 本題考查利用待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)的圖象與性質(zhì),以及方程的根與函數(shù)零點(diǎn)之間的轉(zhuǎn)化,考查化簡(jiǎn)、計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.(1+2x24的展開式中x4的系數(shù)等于24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且CF=$\frac{1}{4}$CD,下列結(jié)論:
①∠BAE=30°,②△ABE~△AEF,③AE⊥EF,④△ADF~△ECF.
其中正確的有②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x+1|+|x-a|.
(1)當(dāng)a=2時(shí),解不等式:f(x)≥5;
(2)若存在x0∈R,使得f(x0)<2,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|,記f(x)≤2的解集為M.
(Ⅰ)求集合M
(Ⅱ)若a∈M,試比較a2-a+1與$\frac{1}{a}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.解不等式2|x-1|+x-4>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos 2x+$\frac{1}{2}$,x∈R.
(1)求函數(shù)f(x)的最大值,及取最大值時(shí)x的值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c且c=$\sqrt{3}$,f(C)=1,若sinB=2sinA,求A,B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某同學(xué)從4本不同的科普雜志,3本不同的文摘雜志,2本不同的娛樂新聞雜志中任選一本閱讀,則不同的選法共有( 。
A.24種B.9種C.3種D.26種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.方程$\frac{x|x|}{16}$+$\frac{y|y|}{9}$=-1的曲線即為函數(shù)y=f(x)的圖象,對(duì)于函數(shù)y=f(x),有如下結(jié)論:
①f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x存在零點(diǎn); 
③函數(shù)y=f(x)的值域是R; 
④f(x)的圖象不經(jīng)過(guò)第一象限;
其中正確的命題序號(hào)為①③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案