17.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos 2x+$\frac{1}{2}$,x∈R.
(1)求函數(shù)f(x)的最大值,及取最大值時(shí)x的值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c且c=$\sqrt{3}$,f(C)=1,若sinB=2sinA,求A,B的值.

分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得f(x)=sin(2x-$\frac{π}{6}$),利用正弦函數(shù)的性質(zhì)即可得解函數(shù)f(x)的最大值,及取最大值時(shí)x的值.
(2)由$f(c)=sin(2c-\frac{π}{6})=1$,可求$c=\frac{π}{3}$,由正弦定理可得b=2a,利用余弦定理可求a,b,進(jìn)而利用正弦定理即可得解sinB,sinA,從而可求B,A的值.

解答 解:(1)$f(x)=\frac{{\sqrt{3}}}{2}sin2x-\frac{1+cos2x}{2}+\frac{1}{2}=sin(2x-\frac{π}{6})$,…(2分)
當(dāng):$2x-\frac{π}{6}=\frac{π}{2}+2kπ(k∈z)$,
即:$x=\frac{π}{3}+kπ(k∈z)$時(shí),f(x)取得最大值為1,…(6分)
(2)∵$f(c)=sin(2c-\frac{π}{6})=1$,可得2C-$\frac{π}{6}$=2k$π+\frac{π}{2}$,k∈Z,
∴C=kπ+$\frac{π}{3}$,k∈Z,由C∈(0,π),可得:$c=\frac{π}{3}$,
又∵sinB=2sinA⇒b=2a,
由余弦定理:c2=a2+b2-2abcosC=3,
∴a=1,b=2,
由正弦定理:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,
可得$B=\frac{π}{2},A=\frac{π}{6}$.…(12分)

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì),正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.△ABC的頂點(diǎn)A(3,4),B(0,0),C(c,0)(C>0),又∠A為銳角,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-2|-|x-4|.
(1)求不等式f(x)<0的解集;
(2)若函數(shù)g(x)=$\frac{1}{m-f(x)}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)滿足f(2x)+f(x+1)=5x2-x+4;
(1)求f(x)的解析式;
(2)若方程f(x)+m=3x-1在區(qū)間(0,3)上總有兩個(gè)不相等的實(shí)數(shù)根,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2-3a的解集不是空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的外接球的表面積為( 。
A.29πB.25πC.20πD.13π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一列數(shù)是這樣排列的:$\frac{1}{1}$,$\frac{1}{1}$,$\frac{1}{2}$,$\frac{1}{2}$,$\frac{2}{2}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$,$\frac{3}{3}$,$\frac{3}{3}$…其中第2016個(gè)分?jǐn)?shù)是$\frac{18}{45}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)A、B是拋物線y2=2x上異于原點(diǎn)的不同兩點(diǎn),則$\overrightarrow{OA}•\overrightarrow{OB}$的最小值為( 。
A.1B.-1C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,用4種不同顏色給圖中的A、B、C、D四個(gè)區(qū)域涂色,規(guī)定一個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域必須涂不同的顏色,則不同的涂色方案有84種(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案