16.(1)比較a2+b2與2(2a-b)-5的大。
(2)已知a、b∈R+,求證:${a^a}{b^b}≥{(ab)^{\frac{a+b}{2}}}$當(dāng)且僅當(dāng)a=b時(shí)等號成立.

分析 (1)利用“作差法”和配方法即可得出;(2)利用相除法,再根據(jù)指數(shù)函數(shù)的性質(zhì)即可比較.

解答 解:(1)∵a2+b2-[2(2a-b)-5]=(a-2)2+(b+1)2≥0,
∴a2+b2≥2(2a-b)-5,當(dāng)且僅當(dāng)a=2,b=-1時(shí),取等號;
(2)解:設(shè)y=aabb÷${(ab)}^{\frac{a+b}{2}}$=${(\frac{a})}^{\frac{a-b}{2}}$,
當(dāng)a>b時(shí),$\frac{a}$>1,$\frac{a-b}{2}$>0,據(jù)指數(shù)函數(shù)的性質(zhì)可知y>1,即aabb≥${(ab)}^{\frac{a+b}{2}}$.
當(dāng)a<b時(shí),0<$\frac{a}$<1,$\frac{a-b}{2}$<0,根據(jù)指數(shù)函數(shù)的性質(zhì)可知y>1,即aabb≥${(ab)}^{\frac{a+b}{2}}$.
綜上所述:${a^a}{b^b}≥{(ab)^{\frac{a+b}{2}}}$當(dāng)且僅當(dāng)a=b時(shí)等號成立.

點(diǎn)評 本題主要考查了等式的大小比較,需要分類討論,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在空間四邊形ABCD中,E,F(xiàn)分別是AB和AC的中點(diǎn),則BC和平面DEF的位置關(guān)系是( 。
A.相交B.平行C.在平面內(nèi)D.異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)化簡求值:$\sqrt{6\frac{1}{4}}$+$\root{3}{{8}^{2}}$+0.027${\;}^{-\frac{2}{3}}$×(-$\frac{1}{3}$)-2  
(2)已知${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$=3,求a2+a-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列條件中可以確定兩條直線平行的是( 。
A.垂直同一條直線的兩條直線B.平行同一平面的兩條直線
C.平行同一條直線的兩條直線D.和同一平面所成角相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在(2x-3y)10的展開式中,求:
(1)各項(xiàng)系數(shù)的和;
(2)奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和與偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓柱的底面半徑為2,高為3,則圓柱的體積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線的兩個(gè)焦點(diǎn)F1,F(xiàn)2之間的距離為26,雙曲線上一點(diǎn)到兩焦點(diǎn)的距離之差的絕對值為24,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將全體正整數(shù)排成一個(gè)三角形數(shù)陣;根據(jù)以上排列規(guī)律,數(shù)陣中第n(n≥3)行從左至右的第3個(gè)數(shù)是$\frac{{n}^{2}-n+6}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.寫出下列函數(shù)的值域:
(1)y=x+$\frac{1}{x-1}$(x>1);
(2)y=2x+$\frac{1}{x-1}$(x>1).

查看答案和解析>>

同步練習(xí)冊答案