5.已知$\overrightarrow{a}$=(3cos2x-3sin2x,1),$\overrightarrow$=(1,-2$\sqrt{3}$sinxcosx),f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的周期;
(2)求f(x)的單調(diào)遞減區(qū)間.

分析 (1)由數(shù)量積和三角函數(shù)公式可得f(x)=2$\sqrt{3}$cos(2x+$\frac{π}{6}$),由周期公式可得f(x)的周期;
(2)解不等式2kπ≤2x+$\frac{π}{6}$≤2kπ+π可得f(x)的單調(diào)遞減區(qū)間.

解答 解:(1)∵$\overrightarrow{a}$=(3cos2x-3sin2x,1),$\overrightarrow$=(1,-2$\sqrt{3}$sinxcosx),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$=3cos2x-3sin2x-2$\sqrt{3}$sinxcosx
=3cos2x-$\sqrt{3}$sin2x=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)
∴f(x)的周期T=$\frac{2π}{2}$=π;
(2)由2kπ≤2x+$\frac{π}{6}$≤2kπ+π可得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
∴f(x)的單調(diào)遞減區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

點(diǎn)評(píng) 本題考查三角函數(shù)恒等變換,涉及向量的知識(shí)和三角函數(shù)的單調(diào)性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F(xiàn)分別在A1B1,D1C1上,A1E=D1F=4,點(diǎn)H,G分別在AB,CD上,AH=DG=10.
(1)證明四邊形EFGH為正方形;
(2)求平面EFGH把該長(zhǎng)方體分成的兩部分體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)g(x)=f(x-1)+x2是定義在R上的奇函數(shù),且f(0)=-2,則f(-2)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求點(diǎn)P(m,n)關(guān)于直線x+y+b=0對(duì)稱的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如果圓x2+y2+Dx+Ey+F=0關(guān)于直線y=2x對(duì)稱.則D,E的關(guān)系為D2+E2-4F>0,D=2E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在等腰直角三角形MON中,∠MON=90°,且OM=ON=1,已知$\overrightarrow{OA}$=$\overrightarrow{OM}$-2$\overrightarrow{ON}$,$\overrightarrow{OB}$=λ$\overrightarrow{OM}$+$\overrightarrow{ON}$,若∠AOB為銳角,則實(shí)數(shù)λ的取值范圍是λ>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)(0,$\sqrt{3}$),離心率為$\frac{1}{2}$,左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).
(1)求橢圓C的方程;
(2)設(shè)⊙O是以F1,F(xiàn)2為直徑的圓,直線l:y=kx+m與⊙O相切,并與橢圓C交于不同的兩點(diǎn)A,B,如圖,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)數(shù)列{an}為遞增的等比數(shù)列,且{a1,a3,a5}⊆{-8,-3,-2,0,1,4,9,16,27}.?dāng)?shù)列{bn}滿足b1=2,bn+1-2bn=8an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=$\frac{{4}^{n}}{_{n}•_{n+1}}$,且數(shù)列{cn}的前n項(xiàng)和為Tn,并求使得Tn>$\frac{1}{{a}_{m}}$對(duì)任意n∈N*都成立的正整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知命題p:$\left\{\begin{array}{l}{x+2≥10}\\{x-10≤0}\end{array}\right.$,命題q:-m≤x≤1+m,若¬p是¬q的必要不充分條件,則實(shí)數(shù)m的取值范圍是m≥9.

查看答案和解析>>

同步練習(xí)冊(cè)答案