A. | f(6)>f(7) | B. | f(6)>f(9) | C. | f(7)>f(9) | D. | f(7)>f(10) |
分析 根據(jù)條件判斷函數(shù)的單調(diào)性,利用函數(shù)的對(duì)稱軸和單調(diào)性之間的關(guān)系進(jìn)行判斷即可.
解答 解:f(x)在(8,+∞)滿足對(duì)任意x1,x2∈(8,+∞),并且x1≠x2有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0成立,
則此時(shí)函數(shù)為減函數(shù),
∵函數(shù)y=f(x+8)為偶函數(shù),
則函數(shù)y=f(x+8)關(guān)于y軸對(duì)稱,即關(guān)于x=0對(duì)稱,
將y=f(x+8)向右平移8個(gè)單位得到y(tǒng)=f(x),則函數(shù)關(guān)于x=8對(duì)稱,
則函數(shù)在(-∞,8)上為增函數(shù),
則f(6)<f(7),故A錯(cuò)誤,
f(6)=f(10),f(7)=f(9),
則f(10)<f(9),即f(6)<f(9),故B錯(cuò)誤,
f(7)=f(9),故C錯(cuò)誤,
f(7)>f(10),故D正確,
故選:D.
點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)條件判斷函數(shù)的單調(diào)性和對(duì)稱性是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{4}$,0) | B. | (0,$\frac{π}{2}$) | C. | ($\frac{π}{2}$,$\frac{3π}{4}$) | D. | ($\frac{3π}{4}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y軸對(duì)稱 | B. | 直線y=-x對(duì)稱 | C. | 坐標(biāo)原點(diǎn)對(duì)稱 | D. | 直線y=x對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com