2.教育儲蓄是一種零存整取定期儲蓄存款,它享受整存整取利率,利息免稅,教育儲蓄的對象為在校小學四年級(含四年級)以上的學生.假設(shè)零存整取3年期教育儲蓄的月利率為千分之兩點一.
(1)欲在3年后一次支取本息合計2萬元,每月大約存入多少元?
(2)零存整取3年期教育儲蓄每月至多存入多少元,3年后本息合計約為5萬元(精確到1元)

分析 設(shè)每月存入x元,則3年后的本息和為:x(1+0.0021)×36+x(1+0.0021)×35+x(1+0.0021)×34+…+x(1+0.0021)×1,利用等差數(shù)列的前n項和化簡表達式,可得x值.

解答 解:(1)設(shè)每月存入x元,可使3年后一次支取本息合計2萬元,
則3年后的本息和為:x(1+0.0021)×36+x(1+0.0021)×35+x(1+0.0021)×34+…+x(1+0.0021)×1=x(1+0.0021)×(36+35+34+…+1)=667.3986x=20000,
解得:x≈30;
(2)設(shè)每月存入x元,可使3年后一次支取本息合計5萬元,
則3年后的本息和為:x(1+0.0021)×36+x(1+0.0021)×35+x(1+0.0021)×34+…+x(1+0.0021)×1=x(1+0.0021)×(36+35+34+…+1)=667.3986x=50000,
解得:x≈75;

點評 本題考查的知識點是等差數(shù)列的前n項和,正確表達式出3年后的本息和,是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知點(-3,-1)在直線3x-2y-a=0的上方,則a的取值范圍為(-7,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.關(guān)于函數(shù)f(x)=2sin(2x-$\frac{π}{6}$)(x∈R),有下列命題:
①y=f(x)的圖象關(guān)于直線x=-$\frac{π}{6}$對稱     
②y=f(x)的圖象關(guān)于點($\frac{π}{6}$,0)對稱
③若f(x1)=f(x2)=0,可得x1-x2必為π的整數(shù)倍
④y=f(x)在(-$\frac{π}{6}$,$\frac{π}{6}$)上單調(diào)遞增
⑤y=f(x)的圖象可由y=2sin2x的圖象向右平移$\frac{π}{6}$個單位得到
⑥y=f(x)的表達式可改寫成y=2cos(2x+$\frac{π}{3}$),
其中正確命題的序號有①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知α,β∈($\frac{3π}{4}$,π),sin(α+β)=-$\frac{3}{5}$,sin(β-$\frac{π}{4}$)=$\frac{12}{13}$.
(1)求cos(β+$\frac{π}{4}$)的值;
(2)求cos(α+$\frac{π}{4}$)的值;
(3)求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.直線y=x+b是橢圓$\frac{{x}^{2}}{1{2}^{2}}$+$\frac{{y}^{2}}{{5}^{2}}$=1的切線,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.讀程序

對甲乙兩程序和輸出結(jié)果判斷正確的是( 。
A.程序不同,結(jié)果不同B.程序相同,結(jié)果不同
C.程序不同,結(jié)果相同D.程序相同,結(jié)果相同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.給出如下一個算法:
第一步:輸入x;
第二步:若x>0,則y=2x2-1,否則執(zhí)行第三步;
第三步:若x=0,則y=1,否則y=2|x|;
第四步:輸出y.
(1)畫出該算法的程序框圖;
(2)若輸出y的值為1,求輸入實數(shù)x的所有可能的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求函數(shù)f(x)=$(1+x)^{\frac{x}{tan(x-\frac{π}{4})}}$在(0,2π)內(nèi)的間斷點,并判斷其類型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=x2+bx+c-2,若關(guān)于x的不等式-2≤f(x)≤2的解集為[x1,x2]∪[x3,x4](x2<x3),則W=(2x4-x3)-(2x1-x2)的最小值為4$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案