6.已知f(x)=$\frac{f′(1)}{x}$+4x,則f′(3)=( 。
A.2B.$\frac{34}{9}$C.4D.-$\frac{2}{9}$

分析 先求導(dǎo),再代值計算即可.

解答 解:∵f(x)=$\frac{f′(1)}{x}$+4x,
∴f′(x)=-$\frac{f′(1)}{{x}^{2}}$+4,
∴f′(1)=-f′(1)+4,
∴f′(1)=2,
∴f′(3)=-$\frac{2}{9}$+4=$\frac{34}{9}$,
故選:B.

點評 本題考查了導(dǎo)數(shù)的運算法則和導(dǎo)數(shù)的值的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知tan(α+$\frac{5π}{12}$)=2,tan($β+\frac{π}{6}$)=3,則tan(α-β+$\frac{π}{4}$)等于(  )
A.$\frac{1}{5}$B.-$\frac{1}{7}$C.$\frac{1}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.5位好朋友相約乘坐迪士尼樂園的環(huán)園小火車.小火車的車廂共有4節(jié),設(shè)每一位乘客進(jìn)入每節(jié)車廂是等可能的,則這5位好朋友無人落單(即一節(jié)車廂內(nèi),至少有5人中的2人)的概率是$\frac{31}{256}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.原始社會時期,人們通過在繩子上打結(jié)來計算數(shù)量,即“結(jié)繩計數(shù)”.當(dāng)時有位父親,為了準(zhǔn)確記錄孩子的成長天數(shù),在粗細(xì)不同的繩子上打結(jié),由細(xì)到粗,滿七進(jìn)一,那么孩子已經(jīng)出生510天.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}的前n項和a1+a2+a3+…+an可簡記為$\sum_{i=1}^n{a_i}$.已知數(shù)列{an}滿足a1=1,且${a_{n+1}}={a_n}+\frac{1}{n+1}$,n∈N,則$\sum_{k=1}^{2015}{k({a_{2016}}}-{a_k})$=1015560.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.計算定積分:${∫}_{0}^{\frac{π}{2}}$(x+sinx)dx=$\frac{{π}^{2}}{8}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.⊙F1:(x+1)2+y2=9.⊙F2:(x-1)2+y2=1.動圓M與⊙F1內(nèi)切,與⊙F2外切.
(1)求M點的軌跡C的方程;
(2)設(shè)動直線l:y=kx+m與曲線C交于A,B兩點,(O為原點)滿足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.對滿足條件的動直線l中取兩條直線l1,l2,其交點是N,當(dāng)|$\overrightarrow{ON}$|=$\frac{4\sqrt{21}}{7}$時,求l1,l2的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線a,b與平面α,下列命題正確的序號是④.
①若a∥α,b?α,則a∥b;
②若a∥α,b∥α,則a∥b;
③若a∥b,b?α,則a∥α;
④若a∥b,b?α,則a∥α或a?α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)α,β是兩個不同的平面,m是直線且m?α.“m∥β”是“α∥β”的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊答案