9.如果復(fù)數(shù)z=$\frac{3-bi}{2+i}$(b∈R)的實部和虛部相等,則|z|等于(  )
A.3$\sqrt{2}$B.2$\sqrt{2}$C.3D.2

分析 由已知條件利用復(fù)數(shù)代數(shù)形式的乘除運算法則和復(fù)數(shù)的實部和虛部相等,求出z=3+3i,由此能求出|z|.

解答 解:z=$\frac{3-bi}{2+i}$=$\frac{(3-bi)(2-i)}{(2+i)(2-i)}$=$\frac{6-^{\;}-(3+2b)i}{5}$=$\frac{6-b}{5}$-$\frac{3+2b}{5}$i,
∵復(fù)數(shù)z=$\frac{3-bi}{2+i}$(b∈R)的實部和虛部相等,
∴$\frac{6-b}{5}=-\frac{3+2b}{5}$,解得b=-9,
∴z=3+3i,
∴|z|=$\sqrt{9+9}$=3$\sqrt{2}$.
故選:A.

點評 本題考查復(fù)數(shù)的模的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意復(fù)數(shù)的代數(shù)形式的乘除運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{logabn}(a>0且a≠1)是首項為2,公差為1的等差數(shù)列,若數(shù)列{an}是遞增數(shù)列,且滿足an=bnlgbn,則實數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,1)B.(2,+∞)C.($\frac{2}{3}$,1)∪(1,+∞)D.(0,$\frac{2}{3}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,已知AC=4,BC=5.
(I)若∠A=60°,求cosB的值;
(Ⅱ)若cos(A-B)=$\frac{7}{8}$,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在(x-y)n展開式中,偶數(shù)項的系數(shù)之和為-256.
求(1)n;
(2)系數(shù)的最大和最小項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,已知c=21,b=19,B=$\frac{π}{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)兩條相鄰的對稱軸之間的距離為$\frac{π}{2}$,若其圖象向右平移$\frac{π}{3}$個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)(  )
A.關(guān)于點($\frac{π}{12}$,0)對稱B.關(guān)于點($\frac{5π}{12}$,0)對稱
C.關(guān)于直線x=$\frac{5π}{12}$對稱D.關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立坐標(biāo)系.已知曲線C:ρsin2θ=2acosθ(a>0),過點P(-1,2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t是參數(shù)),直線l與曲線C分別交于M,N兩點.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如右圖,三棱錐A-BCD中,所有棱長都為2,點E、F分別是AB,AD中點,則$\overrightarrow{EF}•\overrightarrow{BC}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列等式中,正確的個數(shù)是( 。
(1)$\root{n}{a^n}=|a|$;            
(2)若a∈R,則(a2-a+1)0=1;
(3)$\root{3}{{{x^4}+{y^3}}}=\root{3}{x^4}+y$;    
(4)$\root{3}{-1}=\root{6}{{{{(-1)}^2}}}$.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案