9.張先生從2005年起,每年1月1日到銀行新存入a元(一年定期),若年利率為r保持不變,且每年到期存款自動(dòng)轉(zhuǎn)為新的一年定期,那么到2012年1月1日將所有存款及利息全部取回,他可取回的錢數(shù)為(單位為元)(  )
A.$\frac{a}{r}[{(1+r)^8}-(1+r)]$B.$\frac{a}{r}[{(1+r)^7}-(1+r)]$C.a(1+r)7D.a(1+r)8

分析 由題意可得:到2012年1月1日將所有存款及利息全部=a(1+r)+a(1+r)2+…+a(1+r)7,利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:由題意可得:2006年1月1日本息合計(jì)為:a(1+r);2007年1月1日本息合計(jì)為:a(1+r)+a(1+r)2,…,

那么到2012年1月1日將所有存款及利息全部=a(1+r)+a(1+r)2+…+a(1+r)7=a(1+r)$•\frac{(1+r)^{7}-1}{1+r-1}$=$\frac{a}{r}[(1+r)^{8}-(1+r)]$元,
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足a1=1,an+1=an+2n,則a10=( 。
A.1 024B.1 023C.2 048D.2 047

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知方程x2+ax+1=0,x2+2x-a=0,x2+2ax+2=0,若三個(gè)方程中至少有一個(gè)方程有實(shí)根,則實(shí)數(shù)a的取值范圍a≤$-\sqrt{2}$或a≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.條件甲:$\left\{\begin{array}{l}{2<x+y<4}\\{0<xy<3}\end{array}\right.$;條件乙:$\left\{\begin{array}{l}{0<x<1}\\{2<y<3}\end{array}\right.$,則甲是乙的( 。
A.必要而不充分條件B.充分而不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)m>1在約束條件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目標(biāo)函數(shù)z=x+5y的最大值為4,則m的值為3,目標(biāo)函數(shù)z=2x-y的最小值為$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的定義域?yàn)镈,若存在非零常數(shù)t,使得對(duì)于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),則稱f(x)為M上的t階函數(shù),如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-2a2|-2a2,且f(x)為R上的8階函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.[-1,1]B.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]C.(-∞,-1]∪[1,+∞)D.(-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={-1,3},B={x|x2+ax+b=0},且A=B,則ab=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax2-bx+2滿足f(1)=1,且對(duì)x∈R都有f(x)≥x恒成立.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(t)=4t-$\frac{10}{t}$+k(k∈R),對(duì)任意t∈[1,2],存在x∈[-1,2],使得g(t)<f(x),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)不等式組$\left\{\begin{array}{l}{2x-y+1>0}\\{x+m<0}\\{y-m>0}\end{array}\right.$表示的平面區(qū)域內(nèi)的所有的點(diǎn)P(x0,y0),都滿足x0-2y0<2,則m的取值范圍是(
A.(-$\frac{2}{3}$,$\frac{1}{3}$)B.(-$\frac{2}{3}$,+∞)C.[-$\frac{2}{3}$,$\frac{1}{3}$)D.[-$\frac{2}{3}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案