20.已知方程x2+ax+1=0,x2+2x-a=0,x2+2ax+2=0,若三個(gè)方程中至少有一個(gè)方程有實(shí)根,則實(shí)數(shù)a的取值范圍a≤$-\sqrt{2}$或a≥-1.

分析 由題意得,△1=a2-4≥0或△2=4+4a≥0或△3=4a2-8≥0,從而解得.

解答 解:由題意得,
1=a2-4≥0或△2=4+4a≥0或△3=4a2-8≥0,
解得,a≥2或a≤-2或a≥-1或a≥$\sqrt{2}$或a≤$-\sqrt{2}$;
故a≤$-\sqrt{2}$或a≥-1;
故答案為:a≤$-\sqrt{2}$或a≥-1.

點(diǎn)評(píng) 本題考查了二次方程的求法及應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在等比數(shù)列{an}中,27a2+a5=0,則$\frac{{a}_{n+1}}{{a}_{n}}$=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知單位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為$\frac{π}{3}$,設(shè)$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,則$\overrightarrow a$與$\overrightarrow b$夾角的大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2-3x,那么當(dāng)x>0 時(shí),f(x)的為解析式為( 。
A.f(x)=x2+3xB.f(x)=-x2-3xC.f(x)=x2-3xD.f(x)=-x2-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知0<α<β<$\frac{π}{2}$,sinα=$\frac{3}{5}$,cos(α-β)=$\frac{12}{13}$,求cosβ的值;
(2)在△ABC中,sinA-cosA=$\frac{2}{3}$,求cos2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)a、b、c是不完全相等的正數(shù),求證:
(1)(a+b)(b+c)(c+a)>8abc;
(2)a+b+c>$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列{an}中,a1=1,an+1=2nan(n∈N+),則數(shù)列{an}的通項(xiàng)公式為( 。
A.an=2n-1B.an=2nC.an=2${\;}^{\frac{n(n-1)}{2}}$D.an=2${\;}^{\frac{{n}^{2}}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.張先生從2005年起,每年1月1日到銀行新存入a元(一年定期),若年利率為r保持不變,且每年到期存款自動(dòng)轉(zhuǎn)為新的一年定期,那么到2012年1月1日將所有存款及利息全部取回,他可取回的錢數(shù)為(單位為元)( 。
A.$\frac{a}{r}[{(1+r)^8}-(1+r)]$B.$\frac{a}{r}[{(1+r)^7}-(1+r)]$C.a(1+r)7D.a(1+r)8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若直線a⊥直線b,且a⊥平面α,則( 。
A.b∥αB.b?αC.異面D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案