分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,先根據(jù)目標(biāo)函數(shù)z=x+5y的最大值為4,求出m的值,然后根據(jù)目標(biāo)函數(shù)的幾何意義進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
作出直線z=x+5y=4,
則點(diǎn)A是最優(yōu)解,
由$\left\{\begin{array}{l}{x+5y=4}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1}{4}}\\{y=\frac{3}{4}}\end{array}\right.$,即A($\frac{1}{4}$,$\frac{3}{4}$),
同時(shí)A也在直線y=mx上,
則$\frac{1}{4}$x=$\frac{3}{4}$,解得m=3,
由z=2x-y得y=2x-z,
平移直線y=2x-z,則由圖象知當(dāng)直線經(jīng)過(guò)點(diǎn)A時(shí)直線的截距最大,此時(shí)z最小,
即z=2×$\frac{1}{4}$-$\frac{3}{4}$=$-\frac{1}{4}$,
故答案為:3,$-\frac{1}{4}$.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | an=2n-1 | B. | an=2n | C. | an=2${\;}^{\frac{n(n-1)}{2}}$ | D. | an=2${\;}^{\frac{{n}^{2}}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{a}{r}[{(1+r)^8}-(1+r)]$ | B. | $\frac{a}{r}[{(1+r)^7}-(1+r)]$ | C. | a(1+r)7 | D. | a(1+r)8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com