15.下列關(guān)于平面向量的說(shuō)法,正確的是( 。
A.若|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$與$\overrightarrow$是共線向量,則$\overrightarrow{a}$=$\overrightarrow$B.若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$
C.若$\overrightarrow{a}$與$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$D.零向量的長(zhǎng)度為0

分析 根據(jù)平面向量的基本概念,對(duì)題目中的選項(xiàng)進(jìn)行分析、判斷即可.

解答 解:對(duì)于A,當(dāng)|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$與$\overrightarrow$是共線向量時(shí),$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$,故A錯(cuò)誤;
對(duì)于B,當(dāng)$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$∥$\overrightarrow{c}$時(shí),$\overrightarrow{a}$∥$\overrightarrow{c}$不一定成立,如$\overrightarrow$=$\overrightarrow{0}$時(shí),故B錯(cuò)誤;
對(duì)于C,當(dāng)$\overrightarrow{a}$與$\overrightarrow$都是單位向量時(shí),$\overrightarrow{a}$=$\overrightarrow$不一定成立,因?yàn)樗鼈兊姆较虿灰欢ㄏ嗤,故C錯(cuò)誤;
對(duì)于D,零向量的長(zhǎng)度都為0,故D正確.
故選:D

點(diǎn)評(píng) 本題考查了平面向量的基本概念與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等差數(shù)列{an}滿足a1=1,公差d=3,若an=298,則n=(  )
A.99B.100C.101D.102

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,a=2,b=$\sqrt{3}$,c=1,則最小角為30 度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,則x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=cos(ωx+$\frac{π}{3}$),(ω>0,0<φ<π),其中x∈R且圖象相鄰兩對(duì)稱軸之間的距離為$\frac{π}{2}$;
(1)求f(x)的對(duì)稱軸方程和單調(diào)遞增區(qū)間;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值時(shí)所對(duì)應(yīng)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)D是△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{AB}$=-2$\overrightarrow{DC}$,則( 。
A.$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$B.$\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{3}{2}$$\overrightarrow{AB}$C.$\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AB}$D.$\overrightarrow{BD}$=$\frac{3}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.有下列四個(gè)說(shuō)法:
①若函數(shù)f(x)=asinx+cosx(x∈R)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱,則a=$\frac{\sqrt{3}}{3}$;
②已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),若$\overrightarrow{a}$與$\overrightarrow$的夾角為鈍角,則m<1;
③當(dāng)$\frac{5π}{2}$<α<$\frac{9π}{2}$時(shí),函數(shù)f(x)=sinx-logax有三個(gè)零點(diǎn);
④函數(shù)f(x)=xsinx在[-$\frac{π}{2}$,0]上單調(diào)遞減,在[0,$\frac{π}{2}$]上單調(diào)遞增.
其中正確的是①④(填上所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意正整數(shù)n,都有an=$\frac{3}{4}{S_n}$+2.
(1)設(shè)bn=log2an,求證:數(shù)列{bn}為等差數(shù)列;
(2)在(1)的條件下,設(shè)cn=(-1)n+1$\frac{n+1}{{{b_n}{b_{n+1}}}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求證:$\frac{1}{21}$≤Tn≤$\frac{2}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=sin2x+sinxcosx的周期為π.

查看答案和解析>>

同步練習(xí)冊(cè)答案