分析 由已知可求范圍α+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{3π}{4}$),利用同角三角函數(shù)基本關(guān)系式可求sin(α+$\frac{π}{4}$)的值,進(jìn)而根據(jù)兩角差的正弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡(jiǎn)求值.
解答 解:∵α∈(0,$\frac{π}{2}$),且cos(α+$\frac{π}{4}$)=$\frac{5}{13}$,
∴α+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{3π}{4}$),sin(α+$\frac{π}{4}$)=$\sqrt{1-co{s}^{2}(α+\frac{π}{4})}$=$\frac{12}{13}$,
∴sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{12}{13}$×$\frac{\sqrt{2}}{2}$-$\frac{5}{13}$×$\frac{\sqrt{2}}{2}$=$\frac{{7\sqrt{2}}}{26}$.
故答案為:$\frac{{7\sqrt{2}}}{26}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 179元 | B. | 199元 | C. | 219元 | D. | 239元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com