【題目】對(duì)于定義域?yàn)镈的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時(shí)滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個(gè)“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時(shí),求出n﹣m的最大值.
【答案】
(1)證明:∵y=x2在區(qū)間[0,1]上單調(diào)遞增.
又f(0)=0,f(1)=1,
∴值域?yàn)閇0,1],
∴區(qū)間[0,1]是y=f(x)=x2的一個(gè)“和諧區(qū)間”
(2)證明:設(shè)[m,n]是已知函數(shù)定義域的子集.
∵x≠0,[m,n](﹣∞,0)或[m,n](0,+∞),
故函數(shù) 在[m,n]上單調(diào)遞增.
若[m,n]是已知函數(shù)的“和諧區(qū)間”,則
故m、n是方程 的同號(hào)的相異實(shí)數(shù)根.
∵x2﹣3x+5=0無(wú)實(shí)數(shù)根,
∴函數(shù) 不存在“和諧區(qū)間”
(3)解:設(shè)[m,n]是已知函數(shù)定義域的子集.
∵x≠0,[m,n](﹣∞,0)或[m,n](0,+∞),
故函數(shù) 在[m,n]上單調(diào)遞增.
若[m,n]是已知函數(shù)的“和諧區(qū)間”,則
故m、n是方程 ,即a2x2﹣(a2+a)x+1=0的同號(hào)的相異實(shí)數(shù)根.
∵ ,
∴m,n同號(hào),只須△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3時(shí),
已知函數(shù)有“和諧區(qū)間”[m,n],
∵ ,
∴當(dāng)a=3時(shí),n﹣m取最大值
【解析】(1)根據(jù)二次函數(shù)的性質(zhì),我們可以得出y=f(x)=x2在區(qū)間[0,1]上單調(diào)遞增,且值域也為[0,1]滿足“和諧區(qū)間”的定義,即可得到結(jié)論.(2)該問(wèn)題是一個(gè)確定性問(wèn)題,從正面證明有一定的難度,故可采用反證法來(lái)進(jìn)行證明,即先假設(shè)區(qū)間[m,n]為函數(shù)的“和諧區(qū)間”,然后根據(jù)函數(shù)的性質(zhì)得到矛盾,進(jìn)而得到假設(shè)不成立,原命題成立.(3)設(shè)[m,n]是已知函數(shù)定義域的子集,我們可以用a表示出n﹣m的取值,轉(zhuǎn)化為二次函數(shù)的最值問(wèn)題后,根據(jù)二次函數(shù)的性質(zhì),可以得到答案.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若在內(nèi)恒成立,則稱為函數(shù)的“類對(duì)稱點(diǎn)”,當(dāng)時(shí),試問(wèn)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中a≠0,q:實(shí)數(shù)x滿足.
(I)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍.
(II)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形, , , , , 是等邊三角形,且側(cè)面底面, 分別是, 的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求平面與平面所成的二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nbn}的前n項(xiàng)和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x∈(﹣∞,0)時(shí),f(x)=﹣x2+mx﹣1.
(1)當(dāng)x∈(0,+∞)時(shí),求f(x)的解析式;
(2)若方程f(x)=0有五個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】孝感星河天街購(gòu)物廣場(chǎng)某營(yíng)銷部門隨機(jī)抽查了100名市民在2017年國(guó)慶長(zhǎng)假期間購(gòu)物廣場(chǎng)的消費(fèi)金額,所得數(shù)據(jù)如表,已知消費(fèi)金額不超過(guò)3千元與超過(guò)3千元的人數(shù)比恰為3:2.
(1)試確定, , , 的值,并補(bǔ)全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費(fèi)金額在和的兩個(gè)群體中抽取5人進(jìn)行問(wèn)卷調(diào)查,則各小組應(yīng)抽取幾人?若從這5人中隨機(jī)選取2人,則此2人來(lái)自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓: 的離心率與雙曲線的離心率互為倒數(shù),且橢圓的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線交橢圓于, 兩點(diǎn), ()為橢圓上一點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com