13.已知函數(shù)f(x)=$\frac{{(x+1)}^{2}{+x}^{3}}{{x}^{2}+1}$,則f(log25)+f(log2$\frac{1}{5}$)的值是2.

分析 由題意求得 f(x)+f(-x)=2,可得f(log25)+f(log2$\frac{1}{5}$)=f(log25)+f(-log25)的值.

解答 解:∵已知函數(shù)f(x)=$\frac{{(x+1)}^{2}{+x}^{3}}{{x}^{2}+1}$=1+$\frac{{x}^{3}}{{x}^{2}+1}$,∴f(-x)=1-$\frac{{x}^{3}}{{x}^{2}+1}$,
∴f(x)+f(-x)=2,
則f(log25)+f(log2$\frac{1}{5}$)=f(log25)+f(-log25)=2,
故答案為:2.

點評 本題主要考查對數(shù)函數(shù)的圖象和性質(zhì),求得f(x)+f(-x)=2,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知方程x+$\frac{{e}^{2}}{x}$+m=0有大于0的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,將矩形紙片ABCD(其中$AB=\sqrt{3}$,BC=1)沿對角線AC折起后,使得異面直線BC⊥AD,則此時異面直線AB和CD所成的角的余弦值是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax+a2,h(x)=ax+2,定義函數(shù)g(x)=$\left\{\begin{array}{l}{f(x)(f(x)≥h(x))}\\{h(x)(f(x)<h(x))}\end{array}\right.$.
(1)當a=1時,求g(x)的解析式;
(2)當|a-3|≤1+$\sqrt{2}$時,求函數(shù)g(x)在x∈[2,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點.從A點測得M點的仰角∠MAN=45°,C點的仰角∠CAB=60°以及∠MAC=75°;從C點測得∠MCA=45°.已知山高BC=100m,則山高MN=$\frac{200}{3}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.滿足條件{(x,y)|$\sqrt{(x-3)^{2}+{y}^{2}}$-$\sqrt{(x+3)^{2}+{y}^{2}}$=6}的點P(x,y)的軌跡是射線AP,方程為y=0(x≤-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=-$\frac{1}{2}$lnx+$\frac{2}{x+1}$.
(1)求證:函數(shù)f(x)有且只有一個零點;
(2)對任意實數(shù)x∈[$\frac{1}{e}$,1](e為自然對數(shù)的底數(shù)),使得對任意t∈[$\frac{1}{2}$,2]恒有f(x)≥t3-t2-2at+2成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=2x-4.
(1)當x<0,求f(x)的解析式;
(2)解方程:f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)的定義域為(0,6),g(x)的定義域為[2,7],若f(x)>g(x)的解集是(3,5),則f(x)≤g(x)的解集是[2,3]∪[5,6).

查看答案和解析>>

同步練習(xí)冊答案