18.某校高三年級(jí)共1500人,在某次數(shù)學(xué)測(cè)驗(yàn)后分析學(xué)生試卷情況,需從中抽取一個(gè)容量為500的樣本,按分層抽樣,120分以上抽取100人,90~120分抽取250人,則該次測(cè)驗(yàn)中90分以下的人數(shù)是( 。
A.600B.450C.300D.150

分析 根據(jù)從中抽取一個(gè)容量為500的樣本,按分層抽樣,120分以上抽取100人,90~120分抽取250人,即可得出結(jié)論.

解答 解:∵從中抽取一個(gè)容量為500的樣本,按分層抽樣,120分以上抽取100人,90~120分抽取250人,
∴該次測(cè)驗(yàn)中90分以下抽取的人數(shù)是500-100-250=150.
∴該次測(cè)驗(yàn)中90分以下的人數(shù)是150.
即抽樣比k=$\frac{150}{500}$,
則該次測(cè)驗(yàn)中90分以下的人數(shù)是1500×$\frac{150}{500}$=450.
故選:B.

點(diǎn)評(píng) 本題是考查分層抽樣的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,輸出$s=\frac{2015}{2016}$.那么判斷框內(nèi)應(yīng)填( 。
A.k≤2015B.k≤2016C.k≥2015D.k≥2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.給出以下命題:
(1)函數(shù)f(x)=$\sqrt{{x}^{2}}$與函數(shù)g(x)=|x|是同一個(gè)函數(shù);
(2)函數(shù)f(x)=ax+1(a>0且a≠1)的圖象恒過定點(diǎn)(0,1);
(3)設(shè)指數(shù)函數(shù)f(x)的圖象如圖所示,若關(guān)于x的方程f(x)=$\frac{m-1}{m+1}$有負(fù)數(shù)根,則實(shí)數(shù)m的取值范圍是(1,+∞);
(4)若f(x)=$\left\{\begin{array}{l}{{2}^{x}+t(x≥0)}\\{g(x)(x<0)}\end{array}\right.$為奇函數(shù),則f(f(-2))=-7;
(5)設(shè)集合M={m|函數(shù)f(x)=x2-mx+2m的零點(diǎn)為整數(shù),m∈R},則M的所有元素之和為15.
其中所有正確命題的序號(hào)為( 。
A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的圖象如圖所示,若函數(shù)g(x)=3[f(x)]3-4f(x)+m在x$∈[-\frac{π}{2},\frac{π}{2}]$上有4個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是[$\frac{13}{8}$,$\frac{16}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若二次函數(shù)f(x)=x2+bx+c滿足f(0)=f(-2),且f(1)=3.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)向量$\overrightarrow{a}$=(3cosx,1),$\overrightarrow$=(5sinx+1,cosx),且$\overrightarrow{a}$∥$\overrightarrow$,則cos2x=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)為偶函數(shù),定義域?yàn)镽,在[0,+∞)上是增函數(shù),且f(-1)=0,則f(x)≤0的解集為{x|-1≤x≤0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+5≥0}\end{array}\right.$,目標(biāo)函數(shù)z=3x+y的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是(  )
A.f(x)=x3B.f(x)=lgxC.$f(x)={({\frac{1}{2}})^x}$D.f(x)=3x

查看答案和解析>>

同步練習(xí)冊(cè)答案