18.已知△ABC的周長(zhǎng)為$\sqrt{2}$+1,且sinA+sinB=$\sqrt{2}$sinC,則邊AB的長(zhǎng)為1.

分析 由題意及正弦定理,得 AB+BC+AC=$\sqrt{2}$+1以及BC+AC=$\sqrt{2}$AB,兩式相減,可得AB的值.

解答 解:由題意及正弦定理,得:AB+BC+AC=$\sqrt{2}$+1.
BC+AC=$\sqrt{2}$AB,
兩式相減,可得AB=1.
故答案為:1.

點(diǎn)評(píng) 本題主要考查正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若數(shù)列{an}的通項(xiàng)公式為an=2n+3,則a1+a3+a5+…+a99=5150.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a=(m,n),\overrightarrow b=(1,1)$,滿足$\overrightarrow a•\overrightarrow b≥$2,且$\overrightarrow a(\overrightarrow a-2\overrightarrow b)≤0$,則$\overrightarrow a•\overrightarrow b$的取值范圍是[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域?yàn)椋?∞,+∞),如果,f(x+2016)=$\left\{\begin{array}{l}\sqrt{2}sinx,x≥0\\ lg(-x),x<0\end{array}\right.$,那么$f(2016+\frac{π}{4})•f(-7984)$=(  )
A.2016B.$\frac{1}{4}$C.4D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若A={x|x2+2x-8<0},B={x|x<1},則圖中陰影部分表示的集合為(  )
A.(-4,1]B.(1,2)C.[1,2)D.(-4,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,P是橢圓C上一點(diǎn),O為坐標(biāo)原點(diǎn).已知∠POA=60°,且OP⊥AP,則橢圓C的離心率為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校高三期中考試后,數(shù)學(xué)教師對(duì)本次全部數(shù)學(xué)成績(jī)按1:20進(jìn)行分層抽樣,隨機(jī)抽取了20名學(xué)生的成績(jī)?yōu)闃颖,成?jī)用莖葉圖記錄如圖所示,但部分?jǐn)?shù)據(jù)不小心丟失,同時(shí)得到如表所示的頻率分布表:
分?jǐn)?shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150)總計(jì)
頻數(shù)b
頻率a0.25
(Ⅰ)求表中a,b的值及成績(jī)?cè)赱90,110)范圍內(nèi)的個(gè)體數(shù);
(Ⅱ)從樣本中成績(jī)?cè)赱100,130)內(nèi)的個(gè)體中隨機(jī)抽取4個(gè)個(gè)體,設(shè)其中成績(jī)?cè)赱100,110)內(nèi)的個(gè)體數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X);
(Ⅲ)若把樣本各分?jǐn)?shù)段的頻率看作總體相應(yīng)各分?jǐn)?shù)段的概率,現(xiàn)從全校高三期中考試數(shù)學(xué)成績(jī)中隨機(jī)抽取3個(gè),求其中恰好有1個(gè)成績(jī)及格的概率(成績(jī)?cè)赱90,150)內(nèi)為及格).
附注:假定逐次抽取,且各次抽取互相獨(dú)立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-a|-|2x-1|.
(1)當(dāng)a=2時(shí),求f(x)+3≥0的解集;
(2)當(dāng)x∈[1,3]時(shí),f(x)≤3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=log7$\frac{x+3}{x-1}$,g(x)=log7(x-1)+log7(5-x),F(xiàn)(x)=f(x)+g(x)
(1)求函數(shù)F(x)的定義域;
(2)若F(a)>1,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案